
DATA SHEET

N-CHANNEL MOS FIELD EFFECT POWER TRANSISTOR 2SK1492

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SK1492 is N-channel MOS Field Effect Transistor designed for high voltage switching applications.

FEATURES

- Low On-state Resistance
 - $R_{DS(on)} = 0.12 \Omega MAX. (V_{GS} = 10 V, I_{D} = 18 A)$
- Low Ciss Ciss = 3 000 pF TYP.
- Built-in G-S Gate Protection Diodes
- High Avalanche Capability Ratings

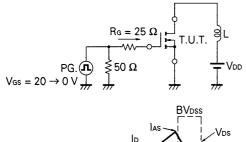
QUALITY GRADE

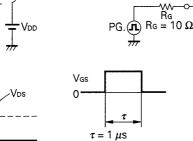
Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS

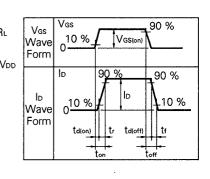
Maximum T	emperatures					
Storage T	–55 to +150	°C				
Channel Temperature		150 MAX.	°C			
Maximum Power Dissipation						
Total Pow	140	w				
Maximum V	oltages and Currents (T $_a$ = 25 °	C)				
VDSS	Drain to Source Voltage	250	V			
Vgss	Gate to Source Voltage	±30	v			
	Drain Current (DC)	±35	Α			
D(pulse)*	Drain Current (pulse)	±140	Α			
* PW ≦ 10 μ s, Duty Cycle ≦ 1 %						
Maximum A	valanche Capability Ratings**					
las	Single Avalanche Current	52.5	Α			
Eas	Single Avalanche Energy	2 500	mJ			
**Starting Ter	n = 25 °C, R₀ = 25 Ω, V₀s = 20 V → 0					


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Drain to Source On-state Resistance	RDS(on)		0.08	0.12	Ω	Vgs = 10 V, Id = 18 A	
Gate to Source Cutoff Voltage	VGS(off)	2.5		3.5	v	Vps = 10 V, lp = 1 mA	
Forward Transfer Admittance	yfs	7.0			S	Vds = 10 V, Id = 18 A	
Drain Leakage Current	loss			100	μA	$V_{DS} = 250 V, V_{GS} = 0$	
Gate to Source Leakage Current	lgss			±10	μΑ	$V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0$	
Input Capacitance	Ciss		3 000		pF	V _{DS} = 10 V	
Output Capacitance	Coss		1 500		pF	V _G s = 0 f = 1 MHz	
Reverse Transfer Capacitance	Crss		620		pF		
Turn-On Delay Time	td(on)		50		ns	Vgs = 10 V	
Rise Time	tr		240		ns	V _{DD} = 150 V	
Turn-Off Delay Time	td(off)		140		ns	$I_D = 18 \text{ A}, \text{R}_G = 10 \Omega$	
Fall Time	tr		100		ns	RL = 8.3 Ω	
Total Gate Charge	QG		80		nC	V _{GS} = 10 V	
Gate to Source Charge	Qgs		17		nC	$I_D = 35 A$	
Gate to Drain Charge	Qgd		50		nC	V _{DD} = 200 V	
Diode Forward Voltage	VF(S-D)		1.0		v	IF = 35 A, Vgs = 0	
Reverse Recovery Time	trr		370		ns	IF = 35 A	
Reverse Recovery Charge	Qrr		2.8		μC	di/dt = 50 A/µs	

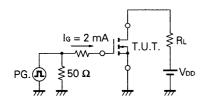

ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

Test Circuit 1: Avalanche Time

Test Circuit 2: Switching Time


Ţ.U.T. [≹]R∟

-Starting Tch


. Duty Cycle ≦ 1 %

Test Circuit 3: Gate Charge

0.

VDD

2