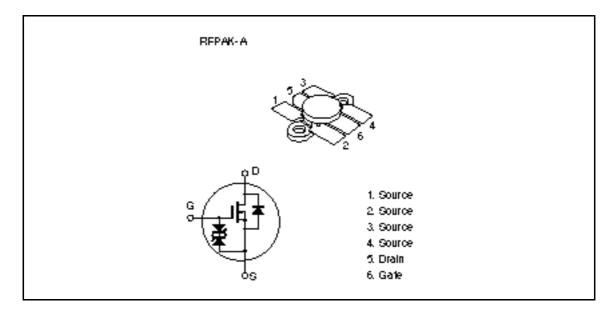
Silicon N-Channel MOS FET

HITACHI


Application

HF/VHF power amplifier

Features

- High breakdown voltage
- You can decrease handling current.
- Included gate protection diode
- No secondary-breakdown
- Wide area of safe operation
- Simple bias circuitry
- No thermal runaway

Outline

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	180	V
Gate to source voltage	V _{GSS}	±20	V
Drain current	I _D	8	А
Channel dissipation	Pch*1	120	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Note: 1. Value at $T_c = 25^{\circ}C$

Electrical Characteristics ($Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Power output	Po	140	180	—	W	$V_{DD} = 80 \text{ V}, \text{ f} = 28 \text{ MHz},$
Drain efficiency		—	80	—	%	I _{DQ} = 0.1 A, Pin = 5 W
Drain to source breakdown voltage	$V_{(BR)DSS}$	180	_	_	V	$I_{\rm D}$ = 10 mA, $V_{\rm GS}$ = 0
Gate to source breakdown voltage	$V_{(\text{BR})\text{GSS}}$	±20	_	_	V	$I_{g} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	0.5		3.0	V	$I_{\rm D} = 1 \text{ mA}, V_{\rm DS} = 10 \text{ V}^{*1}$
Drain current	I _{DSS}	_		1.0	mA	$V_{\rm DS} = 140 \text{ V}, \text{ V}_{\rm GS} = 0$
Drain to source saturation voltage	$V_{\text{DS(on)}}$	_	3.8	6.0	V	$I_{D} = 4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}^{*1}$
Forward transfer admittance	y _{fs}	0.9	1.25	_	S	$I_{\rm D} = 3$ A, $V_{\rm DS} = 20$ V ^{*1}
Input capacitance	Ciss	_	440	_	рF	$V_{GS} = 5 V, V_{DS} = 0,$ f = 1 MHz
Output capacitance	Coss	—	75	—	рF	$V_{GS} = -5 V, V_{DS} = 50 V,$ f = 1 MHz
Reverse transfer capacitance	Crss	_	0.5	_	pF	$V_{GD} = -50 \text{ V}, \text{ f} = 1 \text{ MHz}$
Power output	Po	_	100		W_{PEP}	$V_{DD} = 80 V, f = 28 MHz,$
Power gain	PG	_	17	_	dB	f = 20 kHz, IMD30 dB

Note: 1. Pulse Test

CAUTION: OPERATING HAZARDS

Beryllium Oxide Ceramics have been employed in these products.

Since dust or fume of the material is highly poison to the human body, please do not treat them mechanically or chemically in the manner which might expose them to the air. And it should never be thrown out with general industrial or domestic waste.

HITACHI

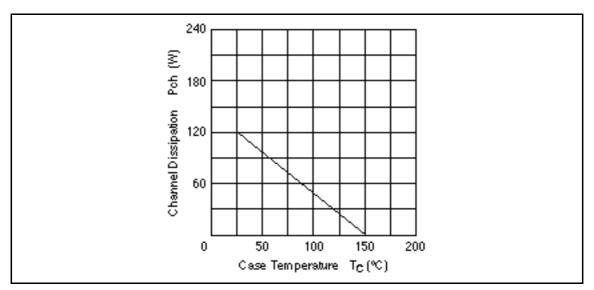


Figure 1 Power vs. Temperature Derating

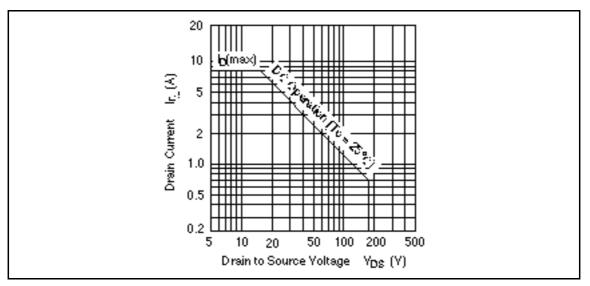


Figure 2 Maximum Safe Operation Area

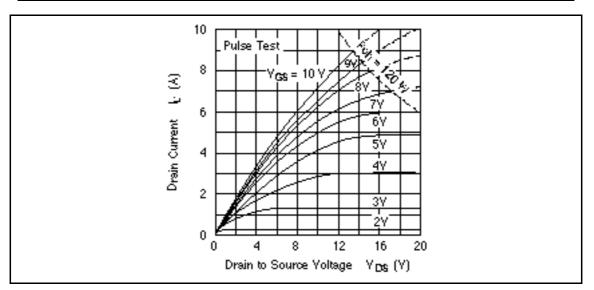


Figure 3 Typical Output Characteristics

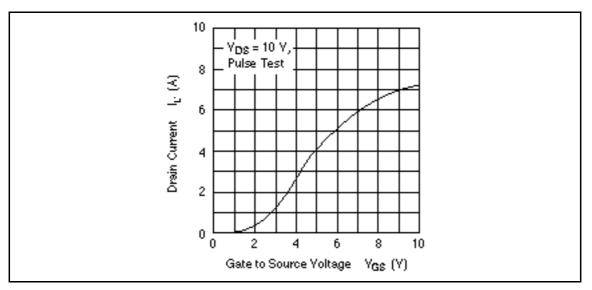


Figure 4 Typical Transfer Characteristics

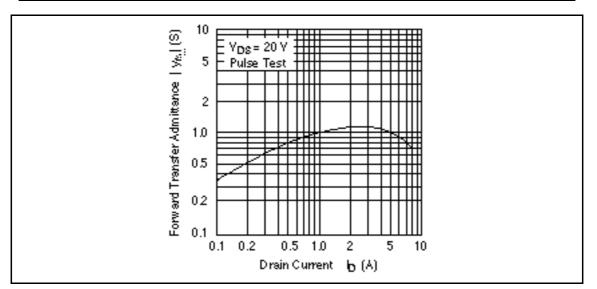


Figure 5 Forward Transfer Admittance vs. Drain Current

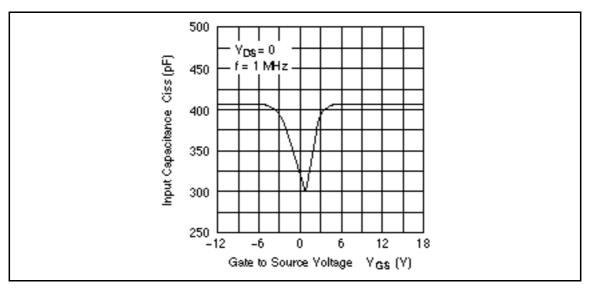


Figure 6 Input Capacitance vs. Gate to Source Voltage

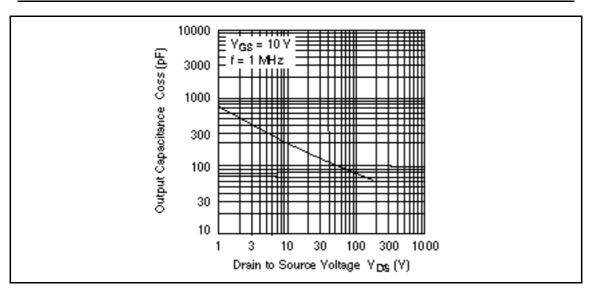


Figure 7 Output Capacitance vs. Drain to Source Voltage

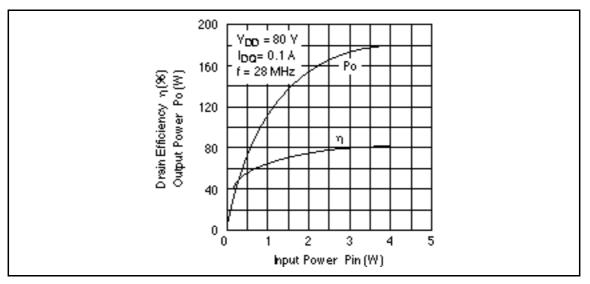


Figure 8 Output Power, Drain Efficiency vs. Input Power

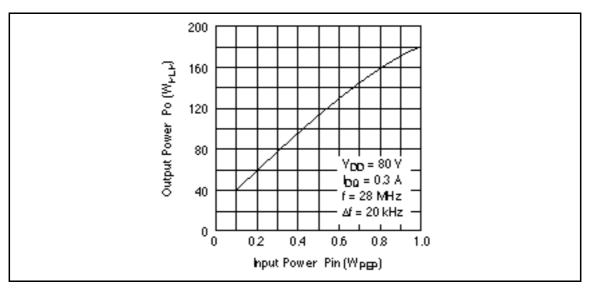


Figure 9 Output Power vs. Input Power (2 Tones)

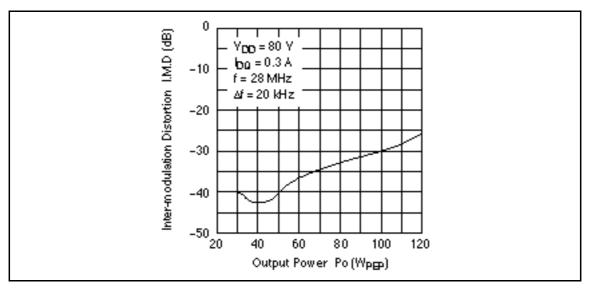


Figure 10 Inter-Modulation Distortion vs. Output Power

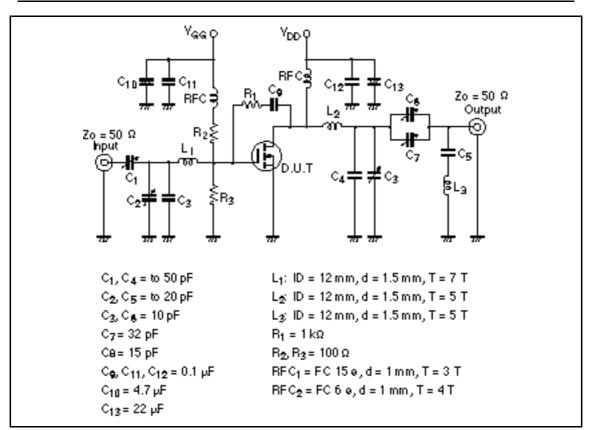
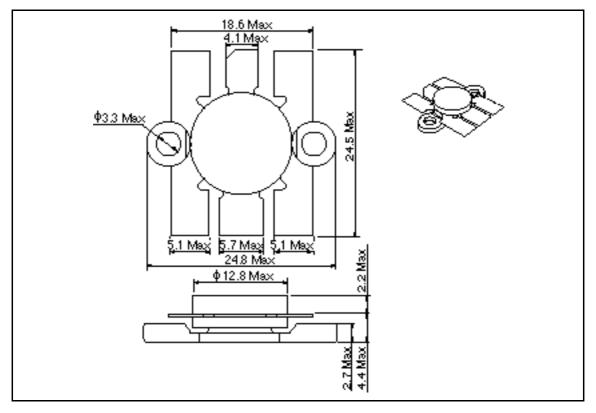



Figure 11 28 MHz Pout Test Circuit

Package Dimensions

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC DV. Neppon Bidg, 2-5-2, Ohte-mach, Chiyoda-ku, Tokyo 100, Japan Tet Tokyo (03, 3270-2111 Fax (03, 3270-5109

For Author in forms Ion write to : Hischi America, Utd Semiconductor & IC DV. 2000 Sierra Point Parkway Briebana, CA. 94005-4835 U S.A. Tet 415-583-8300 Fax: 415-583-4207

Hitschi Burope GmbH Bectronic Components Group Cratinentsi Burope Danacher Straße 3 D-85522 Feldkirchen Minchen Tet 089-9 94 80-0 Fex: 089-9 29 30 00 Hitschi Burope Ltd. Bectronic Components Div. Northern Burope Headquerters Whitsbrock Ferk Lower Cock hem Roed hitsdenhead Berkshire SL68YA United Kingdom Tet 0628-355000 Fex 0628-778222 Hitschi Asia Pta. Ltd 45 Collyer Quay \$20-00 Hitschi Tower Singapore 0404 Tet 535-2400 Fax 535-4533

Hitschi Asia (Hong Kong) Ltd. Unit 705, North Tower, World Finance Cantre, Harbour City, Carton Road Taim She Taui, Kowloon Hong Kong Tet 27359218 Fax: 27359218

HITACHI

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.