

Thunderbolt ∕/ HS[™]

APT50GS60BRDQ2(G) APT50GS60SRDQ2(G)

600V, 50A, V_{CE(ON)} = 2.8V Typical

Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode

The Thunderbolt HSTM series is based on thin wafer non-punch through (NPT) technology similar to the Thunderbolt[®] series, but trades higher $V_{CE(ON)}$ for significantly lower turn-on energy E_{off} . The low switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET performance but lower cost.

An extremely tight parameter distribution combined with a positive V_{CE(ON)} temperature coefficient make it easy to parallel Thunderbolts HS[™] IGBT's. Controlled slew rates result in very good noise and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode. APT50GS60BRDQ2(G)

Features

- Fast Switching with low EMI
- Very Low E_{OFF} for Maximum Efficiency
- Short circuit rated
- Low Gate Charge
- Tight parameter distribution
- Easy paralleling
- RoHS Compliant

ZVS Phase Shifted and other Full Bridge

Typical Applications

- Half Bridge
- High Power PFC Boost
- Welding
- Induction heating
- High Frequency SMPS

D³PAk

APT50GS60SRDQ2(G)

Absolute	Maximum Ratings						
Symbol	Parameter			Rating			
I _{C1}	Continuous Collector Current $T_C = @ 25^{\circ}C$			93			
I _{C1}	Continuous Collector Current $T_C = @ 100^{\circ}C$			50			
I _{CM}	Pulsed Collector Current ①		195		1		
V_{GE}	Gate-Emitter Voltage		±30V			V	
SSOA	Switching Safe Operating Area			195			
E _{AS}	Single Pulse Avalanche Energy ^②			280			
t _{sc}	Short Circut Withstand Time ^③			10			
I _F	Diode Continuous Forward Current	T _C = 25°C		90			
		T _C = 100°C		55		A	
I _{FRM}	Diode Max. Repetitive Forward Current	195					
Thermal and Mechanical Characteristics							
Symbol	Parameter		Min	Typ	Max	Unit	

Symbol	Parameter		Min	Тур	Max	Unit
P _D	Total Power Dissipation T _C = @ 25°C		-	-	415	W
R _{θJC}	Junction to Case Thermal Resistance	IGBT	-	-	0.30	°C/W
		Diode			0.67	
R _{0CS}	Case to Sink Thermal Resistance, Flat Greased Surface	o Sink Thermal Resistance, Flat Greased Surface		0.11	-	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55	-	150	°C
TL	Soldering Temperature for 10 Seconds (1.6mm from case)		-	-	300	U
w _T	Pookago Weight		-	0.22	-	oz g
			-	5.9	-	
Torque	Mounting Targue (TO 247) 6 22 M2 Sarow		-		10	in∙lbf
	wounting Forque (TO-247), 6-32 W3 SCREW		-	-	1.1	N∙m
1944						

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.

Microsemi Website - http://www.microsemi.com

Static Characteristics

T_J = 25°C unless otherwise specified

APT50GS60B_SRDQ2(G)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250\mu A$		600	-	-	V
$\Delta V_{BR(CES)} / \Delta T_J$	Breakdown Voltage Temperature Coeff	Reference to 25°C, $I_{C} = 250 \mu A$		-	0.60	-	V/°C
V _{CE(ON)}	Collector-Emitter On Voltage ⁽⁴⁾	V _{GE} = 15V	$T_J = 25^{\circ}C$	-	2.8	3.15	V
		I _C = 50A	T _J = 125°C	-	3.25	-	
V _{EC}	Diode Forward Voltage ⁽⁴⁾	L _ 50A	$T_J = 25^{\circ}C$	-	2.15	-	
		$I_{\rm C} = 50$ A	T _J = 125°C		1.8	-	
V _{GE(th)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_C = 1mA$		3	4	5	
$\Delta V_{GE(th)} / \Delta T_J$	Threshold Voltage Temp Coeff			-	6.7	-	mV/°C
I _{CES}	Zara Cata Valtaga Callestor Current	$V_{CE} = 600V,$	$T_J = 25^{\circ}C$	-	-	50	
	Zero Gale voltage Collector Current	$V_{GE} = 0V$	$T_J = 125^{\circ}C$	-	-	TBD	μΑ
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = \pm 20V$		-	-	±100	nA

Dynamic Characteristics

 $T_J = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{CE} = 50V, I_{C} = 50A$	-	31	-	S
C _{ies}	Input Capacitance		-	2635	-	
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$	-	240	-	
C _{res}	Reverse Transfer Capacitance		-	145	-	pF
C _{o(cr)}	Reverse Transfer Capacitance Charge Related ⁽⁵⁾	V _{GE} = 0V	-	115	-	
C _{o(er)}	Reverse Transfer Capacitance Current Related ⁶	$V_{CE} = 0$ to 400V		85		
Qg	Total Gate Charge		-	235	-	nC
Q _{ge}	Gate-Emitter Charge	$V_{GE} = 0 \text{ to } 15V$	-	18	-	
G _{gc}	Gate-Collector Charge	$C = 3000, V_{CE} = 3000V$	-	100	-	
t _{d(on)}	Turn-On Delay Time		-	16	-	
t _r	Rise Time	Inductive Switching IGBT and	-	33	-	ns
t _{d(off)}	Turn-Off Delay Time	Diode:	-	225	-	
t _f	Fall Time	$T_{J} = 25^{\circ}C, V_{CC} = 400V,$ $I_{C} = 50A$ $R_{G} = 4.7\Omega^{(7)}, V_{GG} = 15V$	-	37	-]
E _{on1}	Turn-On Switching Energy $^{\textcircled{8}}$		-	TBD	-	
E _{on2}	Turn-On Switching Energy ⁽⁹⁾		-	1.2	-	mJ
E _{off}	Turn-Off Switching Energy 10		-	0.755	-	
t _{d(on)}	Turn-On Delay Time		-	33	-	
t _r	Rise Time	Inductive Switching IGBT and Diode: $T_{J} = 125^{\circ}C, V_{CC} = 400V,$ $I_{C} = 50A$ $R_{G} = 4.7\Omega^{(2)}, V_{GG} = 15V$	-	33	-	
t _{d(off)}	Turn-Off Delay Time		-	250	-	115
t _f	Fall Time		-	23	-]
E _{on1}	Turn-On Switching Energy [®]		-	TBD	-	
E _{on2}	Turn-On Switching Energy ⁽⁹⁾		-	1.7	-	mJ
E _{off}	Turn-Off Switching Energy 10		-	0.950	-	
t _{rr}	Diode Reverse Recovery Time	In = 50A	-	25	-	ns
Q _{rr}	Diode Reverse Recovery Charge	$V_{\rm R} = 400 V$	-	35	-	nC
I _{rrm}	Peak Reverse Recovery Current	di _F /dt = 200A/µs	-	3	-	A