

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOK[™]
Dual SCR Isolated Module
90 Amperes / Up to 1800 Volts

CD43__90B
Dual SCR Isolated
POW-R-BLOK[™] Module
90 Amperes / Up to 1800 Volts

Ordering Information:

Select the complete nine digit module part number from the table below. Example: CD431690B is a 1600Volt, 90 Ampere Dual SCR Isolated *POW-R-BLOK*TM Module

Туре	Voltage Volts (x100)	Current Amperes	Version
CD43	08 12 14 16 18	90	В

Description:

Powerex Dual SCR Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. POW-R-BLOKTM has been tested and recognized by the Underwriters Laboratories.

Features:

- Electrically Isolated Heatsinking
- DBC Alumina (Al₂O₃) Insulator
- Copper Baseplate
- Low Thermal Impedance for Improved Current Capability
- UL Recognized (E78240)

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends
- Lighting Control
- Heat & Temperature Control
- Welders

CD43 Outline Dimensions

Dimension	Inches	Millimeters	
Α	3.66	93	
В	0.79	20	
С	3.15	80	
D	1.18	30	
F	0.61	15.5	
G	0.79	20	
Н	0.79	20	
J	0.16	4	
K	0.22	5.7	
L	0.59	15	
M	1.10	28	
N	0.31	8	
Р	0.94	24	
Q	1.16	29.4	
S	0.11 x .03	2.8 x 0.8	
T	0.25	6.4	
U	M5	M5	
Note: Dimensions are for reference only.			

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOKTM
Dual SCR Isolated Module
90 Amperes / Up to 1800 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	up to 1800	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100	V
RMS Forward Current	180° Conduction, T _C =84°C	I _{T(RMS)}	150	Α
Average Forward Current	180° Conduction, T _C =84°C	I _{T(AV)}	95	Α
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	1570	Α
	60 Hz, No V _{RRM} reapplied, T _i =125°C	I_{TSM}	1870	Α
	60 Hz, No V _{RRM} reapplied, T _i =25°C	I_{TSM}	2100	Α
	50 Hz, 100% V _{RRM} reapplied, T _i =125°C	I_{TSM}	1500	Α
	50 Hz, No V _{RRM} reapplied, T _i =125°C	I_{TSM}	1785	Α
	50 Hz, No V _{RRM} reapplied, T _j =25°C	I_{TSM}	2000	Α
² t for Fusing for One Cycle, 8.3 milliseconds	8.3 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	10,270	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	14,520	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =25°C	l ² t	18,300	A ² sec
	10 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	11,250	A ² sec
	10 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	15,910	A ² sec
	10 ms, No V _{RRM} reapplied, T _i =25°C	l ² t	20,000	A ² sec
Maximum Rate-of-Rise of On-State Current, (Non-Repetitive)	T _j =125°C	di/dt	150	A/µs
Operating Temperature		TJ	-40 to +125	°C
Storage Temperature		T _{stg}	-40 to +125	°C
Max. Mounting Torque, M5 Mounting Screw on Terminals			25 3	inLb. Nm
Max. Mounting Torque, Module to Heatsink			44	inLb.
Madula Waight Timinal			5	Nm
Module Weight, Typical			95 3.35	g oz.
V Isolation @ 25C	50 – 60 Hz, 1 minute	V_{rms}	3000	V V
Circuit to base, all terminals shorted together	50 – 60 Hz, 1 minute 50 – 60 Hz, 1 second	V_{rms} V_{rms}	3500 3500	V

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice.

The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOKTM
Dual SCR Isolated Module
90 Amperes / Up to 1800 Volts

Electrical Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	Up to 1800V, T _J =125°C		20	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 1800V, T _J =125°C		20	mA
Peak On-State Voltage	V_{TM} / V_{FM}	I _{TM} / I _{FM} = 300A		1.65	V
Threshold Voltage, Low-level Slope Resistance, Low-level	$V_{(TO)1} \\ r_{T1}$	T_J = 125°C, I = 16.7% x $\pi I_{T(AV)}$ to $\pi I_{T(AV)}$		0.9 2.0	V mΩ
Minimum dV/dt	dV/dt	T _j =125°C, Up to 800V T _j =125°C, 1200 - 1800V	500 1000		V/µs V/µs
Turn-Off Time (Typical)	t off	T _J = 25°C	40 - 100	(Typical)	μs
Gate Trigger Current	I _{GT}	T _j = 25°C, V _D =6V, Resistive Load		150	mA
Gate Trigger Voltage	V_{GT}	T _j = 25°C, V _D =6V, Resistive Load		3.0	Volts
Non-Triggering Gate Voltage	V_{GDM}	T_j =125°C, V_D = V_{DRM}		0.25	Volts
Non-Triggering Gate Current	I_{GDM}	T_j =125°C, V_D = V_{DRM}		6	mA
Holding Current	I _H	T _J = 25°C		250	mA
Latching Current	I _L	T _J = 25°C		600	mA

Thermal Characteristics

Characteristics	Symbol		Max.	Units
Thermal Resistance, Junction to Case DC Operation	$R_{\Theta J-C}$	Per Module, both conducting Per Junction, both conducting	0.14 0.28	°C/W °C/W
Thermal Resistance, Case to Sink Lubricated	R _{⊝C-S}	Per Module	0.1	°C/W

Revision Date: 04/28/2009