


Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] **Dual SCR Isolated Module** 150 Amperes / Up to 1800 Volts

CD63__15B **Dual SCR Isolated** POW-R-BLOK[™] Module 150 Amperes / Up to 1800 Volts

Description:

Powerex Dual SCR Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. POW-R-BLOKTM has been tested and recognized by the Underwriters Laboratories.

Features:

- Electrically Isolated Heatsinking
- DBC Alumina (Al₂O₃) Insulator
- **Glass Passivated Chips**
- Metal Baseplate
- Low Thermal Impedance for Improved Current Capability
- Quick Connect Gate Terminal with Provision for Keyed Mating Plug
- UL Recognized (E78240)

Ordering Information:

Select the complete nine digit module part number from the table below. Example: CD631615B is a 1600Volt, 150 Ampere Dual SCR Isolated POW-R-BLOKTM Module

Туре	Voltage Volts (x100)	Current Amperes (x 10)	Version
CD63	08 12 14 16 18	15	В

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- **Battery Supplies**
- **Power Supplies**
- Large IGBT Circuit Front Ends
- Lighting Control
- Heat & Temperature Control
- Welders

CD63_15B Outline Dimensions

Dimension	Inches	Millimeters	
A	3.70	94	
В	1.34	34	
С	1.18	30	
D	3.15	80	
E	0.67	17	
F	0.91	23	
G	0.51	13	
Н	0.35	8.3	
J	M6	M6	
K	0.26	6.4	
М	.020	5	
N	0.28	6	
Р	1.06	27	
Q	1.14	29	
R	0.03	0.8	
S	0.11	2.8	
Note: Dimensions are for reference only			

Note: Dimensions are for reference only.

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™]
Dual SCR Isolated Module
150 Amperes / Up to 1800 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	up to 1800	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100	V
RMS Forward Current	180° Conduction, T _C =85°C	I _{T(RMS)}	235	Α
Average Forward Current	180° Conduction, T _C =82°C	I _{T(AV)}	160	Α
	180° Conduction, T _C =85°C	$I_{T(AV)}$	150	Α
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	3700	Α
	60 Hz, No V _{RRM} reapplied, T _j =125°C	I_{TSM}	5250	Α
	50 Hz, 100% V _{RRM} reapplied, T _i =125°C	I_{TSM}	3520	A
	50 Hz, No V _{RRM} reapplied, T _i =125°C	I_{TSM}	5000	Α
Peak Three Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	2970	Α
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	2830	Α
Peak Ten Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	2335	Α
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	I_{TSM}	2220	Α
I ² t for Fusing for One Cycle	8.3 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	57,040	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	114,840	A ² sec
	10 ms, 100% V _{RRM} reapplied, T _i =125°C	l²t	61,950	A ² sec
	10 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	125,000	A ² sec
Maximum Rate-of-Rise of On-State Current,	T _i =125°C,	di/dt	200	A/µs
Non Repetitive	V _D = V _{DRM (Rated)} , I _{TM} =400A ,			
	$I_G = 0.5 \text{ A}, T_r < 0.25 \mu \text{s}, t_p > 6 \mu \text{s}$			
Peak Gate Power Dissipation	$T_p < 5 \text{ ms}, T_j = 125^{\circ}\text{C}$	P_{GM}	12	W
Average Gate Power Dissipation	F = 50 Hz, T _j = 125°C	$P_{G(AV)}$	3	W
Peak Forward Gate Current	T _p < 5 ms, T _j = 125°C	I_{GFM}	3	Α
Peak Reverse Gate Voltage	T _p < 5 ms, T _j = 125°C	V_{GRM}	10	V
Operating Temperature		TJ	-40 to +125	°C
Storage Temperature		T _{stg}	-40 to +125	°C
Max. Mounting Torque, M6 Mounting Screw on			35 - 50	inLb.
Terminals Max. Mounting Torque, Module to Heatsink			4 - 6 35 - 50	Nm inLb.
			4 - 6	Nm
Module Weight, Typical			165	g
			0.36	OZ.
V Isolation	Tj= 25°C, 1 second	V_{rms}	3600	V
	Tj= 25°C, 1 minute	V_{rms}	3000	V

Revision Date: 04/28/2009

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™]
Dual SCR Isolated Module
150 Amperes / Up to 1800 Volts

Electrical Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	Up to 1800V, T _J =125°C		50	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 1800V, T _J =125°C		50	mA
Peak On-State Voltage	ak On-State Voltage V _{TM} I			1.6	V
Threshold Voltage, Low-level Slope Resistance, Low-level	$V_{(TO)1} \ r_{T1}$	T_J = 125°C, I = 16.7% x $\pi I_{T(AV)}$ to $\pi I_{T(AV)}$		0.85 1.5	V mΩ
Minimum dV/dt	dV/dt	Exponential to 2/3 V_{DRM} T_j =125°C, Gate Open	1000		V/µs
Turn-Off Time (Typical)	t _{off}	T_J = 125°C, I_T = 300A, R_{gk} = 100 Ω V_r = 50V, -dl/dt=15 A/ μ s Re-Applied dV/dt = 20V/ μ s, Linear to 2/3 V_{DRM}	50 - 200	(Typical)	μs
Gate Trigger Current	Trigger Current I_{GT} $T_j = 2$			150	mA
Gate Trigger Voltage	V_{GT}	T_j = 25°C, V_D =6V, R_a =1 Ω , Resistive Load		2.0	Volts
Non-Triggering Gate Voltage	riggering Gate Voltage V _{GDM}		T_j =125°C, V_D = V_{DRM}		Volts
Non-Triggering Gate Current	I_{GDM}	T_j =125°C, V_D = V_{DRM}		10	mA
Holding Current	I _H	T _J =25°C	150	(Typical)	mA
Latching Current	Ι _L	T _J =25°C	300	(Typical)	mA

Thermal Characteristics

Characteristics	Symbol		Max.	Units
Thermal Resistance, Junction to Case DC Operation	R _{⊝J-C}	Per Module, both conducting Per Junction, both conducting	0.085 0.17	°C/W
Thermal Resistance, Case to Sink Lubricated	R _{⊝C-S}	Per Module	0.05	°C/W

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice.

The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

Revision Date: 04/28/2009