RYNCK
SEMICONDUCTOR

DG406BP25
 Gate Turn-off Thyristor

APPLICATIONS

Variable speed A.C. motor drive inverters (VSD-AC).
■ Uninterruptable Power Supplies

- High Voltage Converters.
- Choppers.

KEY PARAMETERS	
$\mathrm{I}_{\text {TCM }}$	1200 A
$\mathrm{~V}_{\text {DRM }}$	2500 V
I_{T}	$500 \mathrm{AV})_{d t}$
$\mathrm{dV}_{\mathrm{D}} / \mathrm{dt}$	$1000 \mathrm{~V} / \mu \mathrm{s}$
$\mathrm{di}_{\mathrm{T}} / \mathrm{dt}$	$300 \mathrm{~A} / \mu \mathrm{s}$

- Welding.

■ Induction Heating.

- DC/DC Converters.

FEATURES

- Double Side Cooling.
- High Reliability In Service.
- High Voltage Capability.

Fault Protection Without Fuses.
■ High Surge Current Capability.

- Turn-off Capability Allows Reduction In Equipment Size And Weight. Low Noise Emission Reduces Acoustic Cladding Necessary For Environmental Requirements.

Outline type code: P.
See Package Details for further information.

VOLTAGE RATINGS

Type Number	Repetitive Peak Off-state Voltage $\mathbf{V}_{\text {DRM }}$	Repetitive Peak Reverse Voltage $\mathbf{V}_{\text {RRM }}$	Conditions \mathbf{V}
DG406BP25	2500	16	$\mathrm{~T}_{\mathrm{Vj}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{DM}}=50 \mathrm{~mA}$,
			$\mathrm{I}_{\text {RRM }}=50 \mathrm{~mA}$

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
$\mathrm{I}_{\mathrm{TCM}}$	Repetitive peak controllable on-state current	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}}, \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{di}{ }_{\mathrm{GQ}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s}, \mathrm{Cs}=1.5 \mu \mathrm{~F}$	1200	A
$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$	Mean on-state current	$\mathrm{T}_{\mathrm{HS}}=80^{\circ} \mathrm{C}$. Double side cooled. Half sine 50 Hz.	500	A
$\mathrm{I}_{\mathrm{T} \text { (RMS })}$	RMS on-state current	$\mathrm{T}_{\mathrm{HS}}=80^{\circ} \mathrm{C}$. Double side cooled. Half sine 50 Hz.	630	A

DG406BP25

SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
$\mathrm{I}_{\text {TSM }}$	Surge (non-repetitive) on-state current	$10 \mathrm{~ms} \mathrm{half} \mathrm{sine}. \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	8.0	kA
$1^{2} \mathrm{t}$	$1^{2}+$ for fusing	10 ms half sine. $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	0.32×10^{6}	$\mathrm{A}^{2} \mathrm{~s}$
dit $/ \mathrm{dt}$	Critical rate of rise of on-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=2000 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=1000 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{FG}} \geq 30 \mathrm{~A}, \\ & \text { Rise time }>1.0 \mu \mathrm{~s} \end{aligned}$	300	A/ $\mu \mathrm{s}$
$\mathrm{dV}_{\mathrm{D}} / \mathrm{dt}$	Rate of rise of off-state voltage	To $66 \% \mathrm{~V}_{\text {DRM }} ; \mathrm{R}_{\mathrm{GK}} \leq 1.5 \Omega, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	500	V/us
		To $66 \% \mathrm{~V}_{\text {DRM }} ; \mathrm{V}_{\mathrm{RG}}=-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	1000	V/us
L_{s}	Peak stray inductance in snubber circuit	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=1000 \mathrm{~A}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}, \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \\ & \mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s}, \mathrm{Cs}=1.0 \mu \mathrm{~F} \end{aligned}$	200	nH

GATE RATINGS

Symbol	Parameter	Conditions	Min.	Max.	Units
$\mathrm{V}_{\mathrm{RGM}}$	Peak reverse gate voltage	This value maybe exceeded during turn-off	-	16	V
$\mathrm{I}_{\mathrm{FGM}}$	Peak forward gate current		20	70	A
$\mathrm{P}_{\mathrm{FG}(\mathrm{AV})}$	Average forward gate power		-	10	W
$\mathrm{P}_{\mathrm{RGM}}$	Peak reverse gate power		-	15	kW
$\mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}$	Rate of rise of reverse gate current		15	60	$\mathrm{~A} / \mu \mathrm{s}$
$\mathrm{t}_{\mathrm{ON(min)}}$	Minimum permissable on time		20	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{OFF}(\text { min })}$	Minimum permissable off time	100	-	$\mu \mathrm{s}$	

THERMAL RATINGS AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
$\mathrm{R}_{\text {th(-hs) }}$	DC thermal resistance - junction to heatsink surface	Double side cooled		-	0.041	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Anode side cooled		-	0.07	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Cathode side cooled		-	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(c-hs) }}$	Contact thermal resistance	Clamping force 12.0 kN With mounting compound	per contact	-	0.009	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{vj}	Virtual junction temperature			-	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }} / \mathrm{T}_{\text {stg }}$	Operating junction/storage temperature range			-40	125	${ }^{\circ} \mathrm{C}$
-	Clamping force			11.0	15.0	kN

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ unless stated otherwise					
Symbol	Parameter	Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {TM }}$	On-state voltage	At 1000 A peak, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}=4 \mathrm{~A}$ d.c.	-	2.5	V
I_{DM}	Peak off-state current	$\mathrm{V}_{\mathrm{DRM}}=2500 \mathrm{~V}, \mathrm{~V}_{\mathrm{RG}}=0 \mathrm{~V}$	-	50	mA
$\mathrm{I}_{\text {RRM }}$	Peak reverse current	At $\mathrm{V}_{\text {RRM }}$	-	50	mA
$V_{G T}$	Gate trigger voltage	$V_{D}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	1.0	V
$I_{G T}$	Gate trigger current	$\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	1.5	A
$\mathrm{I}_{\text {RGM }}$	Reverse gate cathode current	$\mathrm{V}_{\text {RGM }}=16 \mathrm{~V}$, , o gate/cathode resistor	-	50	mA
$\mathrm{E}_{\text {on }}$	Turn-on energy	$\mathrm{V}_{\mathrm{D}}=2000 \mathrm{~V}$	-	1040	mJ
$\mathrm{t}_{\text {d }}$	Delay time	$\mathrm{I}_{\mathrm{T}}=1000 \mathrm{~A}, \mathrm{dl} / \mathrm{dtt}=300 \mathrm{~A} / \mu \mathrm{s}$	-	1.5	$\mu \mathrm{s}$
t_{r}	Rise time	$\mathrm{I}_{\mathrm{FG}}=30 \mathrm{~A}$, rise time $\leq 1.0 \mu \mathrm{~s}$	-	3.0	$\mu \mathrm{s}$
$\mathrm{E}_{\text {OfF }}$	Turn-off energy	$I_{T}=1000 \mathrm{~A}, V_{D M}=2500 \mathrm{~V}$ Snubber Cap Cs $=1.0 \mu \mathrm{~F}$, $\mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s}$	-	2300	mJ
t_{gs}	Storage time		-	14.0	$\mu \mathrm{s}$
t_{gf}	Fall time		-	1.5	$\mu \mathrm{S}$
t_{99}	Gate controlled turn-off time		-	15.5	$\mu \mathrm{s}$
$Q_{G Q}$	Turn-off gate charge		-	3000	$\mu \mathrm{C}$
$\mathrm{Q}_{\text {GQT }}$	Total turn-off gate charge		-	6000	$\mu \mathrm{C}$
$\mathrm{I}_{\text {GOM }}$	Peak reverse gate current		-	420	A

CURVES

Fig. 1 Maximum gate trigger voltage/current vs junction temperature

Fig. 2 On-state characteristics

Fig. 3 Maximum dependence of $\mathrm{I}_{\text {TCM }}$ on C_{S}

Fig. 4 Maximum (limit) transient thermal impedance - double side cooled

Fig. 5 Surge (non-repetitive) on-state current vs time

Fig. 6 Steady state rectangluar wave conduction loss - double side cooled

Fig. 7 Steady state sinusoidal wave conduction loss - double side cooled

Fig. 8 Turn-on energy vs on-state current

Fig. 9 Turn-on energy vs peak forward gate current

Fig. 10 Turn-on energy vs on-state current

Fig. 11 Turn-on energy vs peak forward gate current
Fig. 12 Turn-on energy vs rate of rise of on-state current

Fig. 13 Delay time \& rise time vs turn-on current

Fig. 14 Delay time \& rise time vs peak forward gate current

Fig. 15 Turn-off energy vs on-state current

Fig. 16 Turn-off energy vs rate of rise of reverse gate current

Fig. 17 Turn-off energy vs on-state current

Fig. 18 Turn-off energy loss vs rate of rise of reverse gate current

Fig. 19 Turn-off energy vs on-state current

Fig. 20 Gate fall time vs on-state current

Fig. 21 Gate storage time vs rate of rise of reverse gate current

Fig. 22 Gate fall time vs on-state current

Fig. 23 Gate fall time vs rate of rise of reverse gate current

Fig. 24 Peak reverse gate current vs turn-off current

Fig. 25 Peak reverse gate current vs rate of rise of reversegate current

Fig. 26 Turn-off gate charge vs on-state current

Fig. 27 Turn-off gate charge vs rate of rise of reverse gate current

Fig. 28 Rate of rise of off-state voltage vs gate cathode resistance

Recommended gate conditions:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{TCM}}=1000 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{FG}}=30 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{G}(\mathrm{ON})}=4 \mathrm{~A} \text { d.c. } \\
& \mathrm{t}_{\mathrm{w} 1(\mathrm{~min})}=10 \mu \mathrm{~s} \\
& \mathrm{I}_{\mathrm{GQM}}=420 \mathrm{~A} \\
& \mathrm{di} \\
& \mathrm{i}_{\mathrm{GQ}} \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s} \\
& \mathrm{Q}_{\mathrm{GQ}}=3000 \mu \mathrm{C} \\
& \mathrm{~V}_{\mathrm{RG}(\min)}=2 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{RG}(\max)}=16 \mathrm{~V}
\end{aligned}
$$

These are recommended Dynex Semiconductor conditions. Other conditions are permitted according to users gate drive specifications.

Fig. 29 General switching waveforms

DG406BP25

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

Nominal weight: 350 g
Clamping force: $12 \mathrm{kN} \pm 10 \%$
Lead coaxial,length: 600mm

Package outine type code: P

IMPORTANT INFORMATION:

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction.

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

Product Status \& Product Ordering

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:-

Target Information:

Preliminary Information:

No Annotation:

This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started
The product design is complete and final characterisation for volume production is in progress. The datasheet represents the product as it is now understood but details may change. The product has been approved for production and unless otherwise notified by Dynex any product ordered will be supplied to the current version of the data sheet prevailing at the time of our order acknowledgement.

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.
Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LIMITED
Doddington Road, Lincoln, Lincolnshire, LN6 3LF
United Kingdom.
Phone: +44 (0) 1522500500
Fax: $\quad+44(0) 1522500550$
Web: http://www.dynexsemi.com

