HiPerFRED ${ }^{\text {TM }}$ Epitaxial Diode with soft recovery

Preliminary Data

$V_{\text {RSM }}$ V	$V_{\text {RRM }}$ V	Type
300	300	DSEP 2x 91-03A

Symbol	Conditions	Maximum Ratings		
$\mathrm{I}_{\text {frms }}$			100	A
$\mathrm{I}_{\text {FAVM }}$	$\mathrm{T}_{\mathrm{C}}=65^{\circ} \mathrm{C}$; rectangular, $\mathrm{d}=0.5$		90	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine		1000	A
$\mathrm{E}_{\text {AS }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} ; \text { non-repetitive } \\ & \mathrm{I}_{\mathrm{As}}=4 \mathrm{~A} ; \mathrm{L}=180 \mu \mathrm{H} \end{aligned}$		2.1	mJ
$\mathrm{I}_{\text {AR }}$	$\mathrm{V}_{\mathrm{A}}=1.5 \cdot \mathrm{~V}_{\mathrm{R}}$ typ.; $\mathrm{f}=10 \mathrm{kHz}$; repetitive		0.4	A
T_{vJ}			...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$			150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		200	W
$\mathrm{V}_{\text {ISOL }}$	$50 / 60 \mathrm{~Hz}$, RMS $\mathrm{I}_{\mathrm{ISOL}} \leq 1 \mathrm{~mA}$		2500	V
$M_{\text {d }}$	mounting torque (M4) terminal connection torque (M4)		$\begin{aligned} & .5 / 9-13 \\ & .5 / 9-13 \end{aligned}$	Nm/lb.in. Nm/lb.in.
Weight	typical		30	g
Symbol	Conditions	typ.	aracteristic max.	c Values
$\mathrm{I}_{\mathrm{R}} \quad 1$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}} \\ \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}} \end{array}$		4	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{F}}{ }^{(2)}$	$\begin{array}{ll} \mathrm{I}_{\mathrm{F}}=90 \mathrm{~A} ; & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1.30 \\ & 1.72 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \overline{\mathbf{R}_{\mathrm{thJc}}} \\ & \mathbf{R}_{\mathrm{thCH}} \end{aligned}$		0.1	0.60	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$
$\mathrm{trr}_{\text {r }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=400 \mathrm{~A} / \mathrm{ss} ; \\ & \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} ; \mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C} \end{aligned}$	30		ns
I_{RM}	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=200 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{VJ}}=100^{\circ} \mathrm{C} \end{aligned}$		5.4	A

> Pulse test: (1) Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $<2.0 \%$
> (2) Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$

Data according to IEC 60747 and per diode unless otherwise specified
IXYS reserves the right to change limits, test conditions and dimensions.

$$
\begin{aligned}
\mathrm{I}_{\text {fav }} & =2 \mathrm{x} 90 \mathrm{~A} \\
\mathrm{~V}_{\text {RRM }} & =300 \mathrm{~V} \\
\mathrm{t}_{\mathrm{rr}} & =30 \mathrm{~ns}
\end{aligned}
$$

miniBLOC, SOT-227 B

Features

- International standard package miniBLOC
- Isolation voltage 2500 V~
- UL registered E 72873
- 2 independent FRED in 1 package
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low $I_{R M}$-values
- Soft recovery behaviour

Applications

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low I_{RM} reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Dimensions see outlines.pdf

