

Data Sheet No. PD60195-D

200V max.

3.0A / 3.0A typ.

10 - 20V

95 & 65 ns typ.

IR2010(S) & (PbF)

HIGH AND LOW SIDE DRIVER

Product Summary

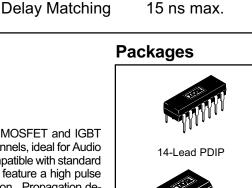
VOFFSET

lo+/-

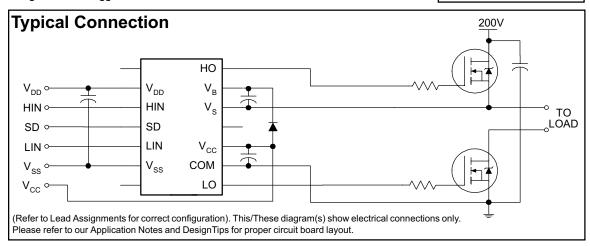
Vout

ton/off

Features


- Floating channel designed for bootstrap operation Fully operational to 200V
- Tolerant to negative transient voltage, dV/dt immune • Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset
- · CMOS Schmitt-triggered inputs with pull-down
- Shut down input turns off both channels
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Also available LEAD-FREE

Applications


- Audio Class D amplifiers
- High power DC-DC SMPS converters
- Other high frequency applications

Description

The IR2010 is a high power, high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels, ideal for Audio Class D and DC-DC converter applications. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.

IR2010(S) & (PbF)

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units	
VB	High side floating supply voltage		-0.3	225		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3		
V _{CC}	Low side fixed supply voltage		-0.3	25	V	
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3		
V _{DD}	Logic supply voltage			V _{SS} + 25		
V _{SS}	Logic supply offset voltage		V _{CC} - 25	V _{CC} + 0.3		
V _{IN}	Logic input voltage (HIN, LIN & SD)		V _{SS} - 0.3	V _{DD} + 0.3		
dV _s /dt	Allowable offset supply voltage transient (fi	gure 2)	_	50	V/ns	
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	(14 lead DIP)	—	1.6	w	
		(16 lead SOIC)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.25	٧V	
R _{THJA}	Thermal resistance, junction to ambient	(14 lead DIP)	_	75	°C/M	
		(16 lead SOIC)	_	100	°C/W	
Tj	Junction temperature		_	150		
T _S	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 24 and 25.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
VS	High side floating supply offset voltage	Note 1	200	
V _{HO}	High side floating output voltage	VS	VB	
V _{CC}	Low side fixed supply voltage	10	20	v
V _{LO}	Low side output voltage	0	Vcc	
V _{DD}	Logic supply voltage	V _{SS} + 3	V _{SS} + 20	
V _{SS}	Logic supply offset voltage	-5 (Note 2)	5	
V _{IN}	Logic input voltage (HIN, LIN & SD)	V _{SS}	V _{DD}	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for Vs of -4 to +200V. Logic state held for Vs of -4V to -VBs.

Note 2: When V_{DD} < 5V, the minimum V_{SS} offset is limited to - V_{DD} .

(Please refer to the Design Tip DT97-3 for more details).

International

IR2010(S)&(PbF)

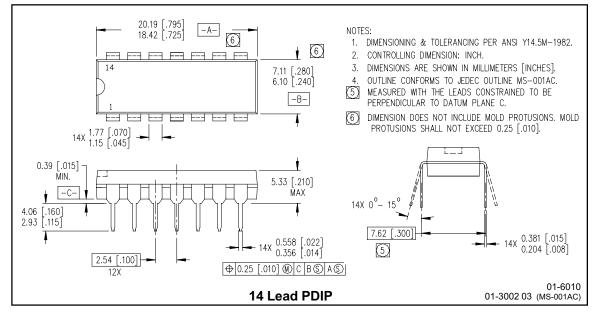
Dynamic Electrical Characteristics

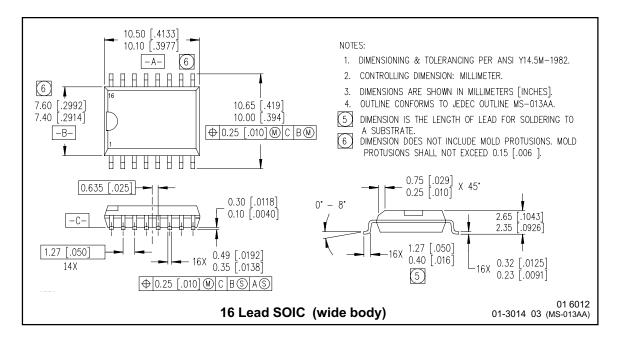
 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	7	50	95	135	- ns	V _S = 0V
t _{off}	Turn-off propagation delay	8	30	65	105		V _S = 200V
t _{sd}	Shutdown propagation delay	9	35	70	105		V _S = 200V
t _r	Turn-on rise time	10	_	10	20		
t _f	Turn-off fall time	11	_	15	25		
MT	Delay matching, HS & LS turn-on/off	6	_	_	15		

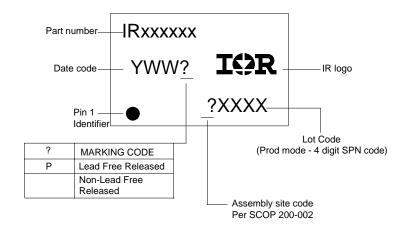
Static Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}, V_{DD}) = 15V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.


Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage	12	9.5	—	—		V _{DD} = 15V
VIL	Logic "0" input voltage	13	—	—	6.0		VDD - 13V
VIH	Logic "1" input voltage	12	2		_		V _{DD} = 3.3V
VIL	Logic "0" input voltage	13	_	_	1	V	VDD - 3.3V
V _{OH}	High level output voltage, V_{BIAS} - V_{O}	14	_	—	1.0		I _O = 0A
Vol	Low level output voltage, VO	15	—	—	0.1		I _O = 0A
I _{LK}	Offset supply leakage current	16	_		50		V _B =V _S = 200V
I _{QBS}	Quiescent VBS supply current	17	_	70	210		$V_{IN} = 0V \text{ or } V_{DD}$
lacc	Quiescent V _{CC} supply current	18	—	100	230		$V_{IN} = 0V \text{ or } V_{DD}$
IQDD	Quiescent V _{DD} supply current	19	_	1	5	μA	$V_{IN} = 0V \text{ or } V_{DD}$
I _{IN+}	Logic "1" input bias current	20	—	20	40		V _{IN} = V _{DD}
I _{IN-}	Logic "0" input bias current	21	_	—	1.0]	V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	22	7.5	8.6	9.7		
V _{BSUV-}	V _{BS} supply undervoltage negative going threshold	23	7.0	8.2	9.4	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	24	7.5	8.6	9.7		
V _{CCUV-}	V _{CC} supply undervoltage negative going threshold	25	7.0	8.2	9.4		
I _{O+}	Output high short circuit pulsed current	26	2.5	3.0	—		V_{O} = 0V, V_{IN} = V_{DD} PW \leq 10 µs
I _{O-}	Output low short circuit pulsed current	27	2.5	3.0	—	A	$V_{O} = 15V, V_{IN} = 0V$ $PW \le 10 \ \mu s$


IR2010(S)&(PbF)

International


Case Outlines

www.irf.com

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free) 14-Lead PDIP IR2010 order IR2010

16-Lead SOIC IR2010S order IR2010S

Leadfree Part

14-Lead PDIP IR2010 order IR2010PbF 16-Lead SOIC IR2010S order IR2010SPbF

International TOR Rectifier IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 9/12/2004

www.irf.com