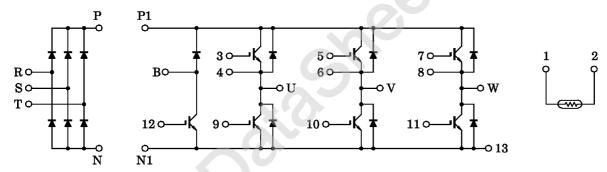
TOSHIBA INTEGRATED IGBT MODULE SILICON N CHANNEL IGBT

MIG25Q906H, MIG25Q906HA


HIGH POWER SWITCHING APPLICATIONS

MOTOR CONTROL APPLICATIONS

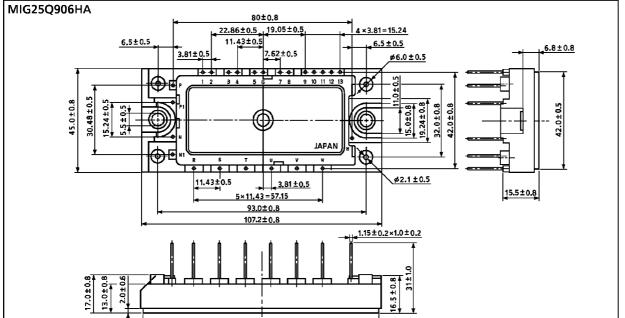
- Integrates Inverter, Converter and Brake Power Circuits and Thermistor in One Package.
- Output (Inverter Stage) : 3\phi 25 A / 1200 V IGBT
- Input (Converter Stage): 3\$\phi\$ 20 A / 1600 V Silicon Rectifier
- The Electrodes are Isolated from Case.
- Weight: 190 g
- Outline

MIG25Q906H : 2-108E5A MIG25Q906HA: 2-108E6A

EQUIVALENT CIRCUIT

MAJ COM

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Package Dimension Unit: mm MIG25Q906H 80±0.8 4 × 3.81 = 15.24 22.86±0.5 __19.05±0.5 11.43±0.5 6.5±0.5 6.8 ± 0.8 ø6.0 ± 0.5 30.48 ± 0.5 15.24±0.5 19.24±0.8 11.43±0.5 15.5±0.8 5×11.43 = 57.15 93.0±0.8 107.2±0.8 21±1.0 13.0±0.6

105 ± 0.5

105±0.5

2-108E5A

Unit: mm

2-108E6A

MAXIMUM RATINGS (Ta = 25°C)

STA	AGE	CHARACTERISTIC	SYMBOL	RATING	UNIT	
Inverter		Collector-Emitter Voltage	v_{CES}	1200	V	
		Gate-Emitter Voltage	VGES	±20	V	
		Callaston Cromont	DC	$^{\mathrm{I}}\mathrm{C}$	35 / 25	Α
		Collector Current	1 ms	I_{CP}	70/50	Α
		Forward Current	DC	$\mathbf{I_F}$	25	Α
		rorward Current	1 ms	I_{FM}	50	Α
		Collector Power Dissipation $(Tc = 25^{\circ}C)$	PC	200	w	
Converter		Repetitive Peak Reverse V	oltage	v_{RRM}	1600	V
		Average Output Rectified (Current	IO	20	Α
		Peak One Cycle Surge For Current (50 Hz, Non-Repeti	I _{FSM}	400	Α	
		Collector-Emitter Voltage	v_{CES}	1200	V	
ICDE	Gate-Emitter Voltage		VGES	±20	V	
	IGBT	0.11.4.4.0.4.4	DC	I _C	35 / 25	Α
		Collector Current	1 ms	ICP	70/50	Α
Brake		Collector Power Dissipation (Tc = 25°C)		PC	200	w
	FWD	Reverse Voltage		v_{R}	1200	V
		Forward Current	DC	$\mathbf{I_F}$	25	Α
		1 ms		I_{FM}	50	Α
Module		Junction Temperature	T_j	150	°C	
		Storage Temperature Range	$\mathrm{T_{stg}}$	-40~125	°C	
		Isolation Voltage	v_{Isol}	2500 (AC 1 minute)	v	
		Screw Torque	_	6	N∙m	

(25°C / 80°C) (25°C / 80°C)

(25°C / 80°C) (25°C / 80°C)

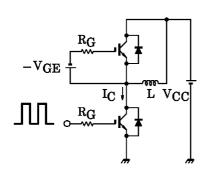
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

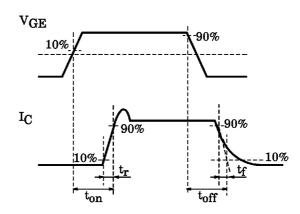
a. Inverter stage

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
CHARACTERISTIC		BIMBOB	TEST CONDITION	IVIIII.	111.	MIAA.	OMI
Gate Leakage Current		I_{GES}	$V_{GE} = \pm 20 V, V_{CE} = 0$	_	_	±500	nA
Collector Cut-Off Current		ICES	$V_{CE} = 1200 \text{ V}, V_{GE} = 0$	_	_	0.5	mA
Gate-Emitter Cut-Off Voltage		VGE (off)	$I_C = 25 \mathrm{mA}, \; V_{CE} = 5 \mathrm{V}$	_	6.0	_	v
Collector-Emitter Saturation			$I_C = 25 \text{ A}$ $T_j = 25^{\circ}\text{C}$	_	2.8	3.2	v
Voltage		VCE (sat)	$V_{GE} = 15 V$ $T_j = 125$ °C	_	3.1	3.7	1 '
Input Capacitance		Cies	$V_{\text{CE}} = 10 \text{ V}, V_{\text{GE}} = 0,$ f = 1 MHz	_	2600	_	рF
Switching	Rise Time	tr	$V_{CC} = 600 V$	_	0.07	0.15	
	Turn-On Time	ton	$I_{\mathbf{C}} = 25 \mathbf{A}$	_	0.15	0.30	
Time	Fall Time	tf	$V_{GE} = \pm 15 \text{ V}$ $R_{G} = 51 \Omega$	_	0.07	0.10	μs
	Turn-Off Time	t _{off}	$T_j = 125^{\circ}C \qquad (Note 1)$	_	0.60	0.90	
Forward Voltage		$v_{ m F}$	$I_{F} = 25 A, V_{GE} = 0$	_	2.0	2.8	V
Reverse Recovery Time		trr	$I_F = 25 \text{ A}, V_{GE} = -10 \text{ V}$ di / dt = 400 A / μ s	_	0.10	0.25	μs
Thermal Resistance		D	Transistor	_	_	0.6	°C/W
		$R_{ ext{th }(j-c)}$	Diode	_	_	1.0	O/W

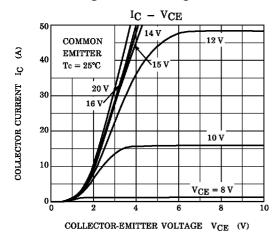
b. Converter stage

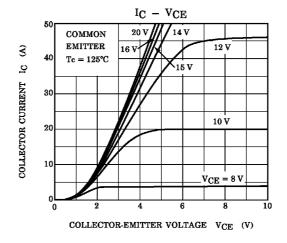
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Repetitive Peak Reverse Current	I_{RRM}	$V_{RRM} = 1600 V$	-	_	50	μ A
Peak Forward Voltage	v_{FM}	$I_{\text{FM}} = 20 \text{ A}$	_	1.05	1.20	V
Peak One Cycle Surge Forward Current	I_{FSM}	50 Hz sine-half-wave	400	_	_	A
Thermal Resistance	R _{th (j-e)}	_	_	_	1.56	°C/W

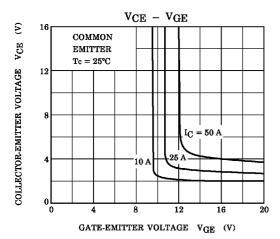

c. Brake stage

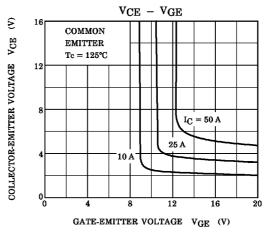

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current		IGES	$V_{GE} = \pm 20 V, V_{CE} = 0$	l —	_	±500	nA
Collector Cut-Off Current		ICES	$V_{CE} = 1200 V, V_{GE} = 0$	_	_	0.5	mA
Reverse Current		$I_{\mathbf{R}}$	$V_R = 1200 V$	_	_	1.0	mA
Gate-Emitter Cut-Off Voltage		V _{GE} (off)	$ m I_{C}=25mA,~V_{CE}=5V$	_	6.0	_	V
Collector-Emitter Saturation		Van	$I_C = 25 \text{ A}$ $T_j = 25^{\circ}\text{C}$	_	2.8	3.2	v
Voltage		V _{CE} (sat)	$V_{ m GE}=15 m V T_j=125^{\circ} m C$	_	3.1	3.7	•
Input Capacitance		Cies	$V_{CE} = 10 \text{ V}, V_{GE} = 0,$ f = 1 MHz	_	2600	_	рF
	Rise Time	tr	$V_{CC} = 600 \text{ V}$	_	0.07	0.15	
Switching	Turn-On Time	ton	$I_{C} = 25 \text{ A}$	_	0.15	0.30	
Time	Fall Time	tf	$ \begin{cases} V_{GE} = \pm 15 \text{ V} \\ R_{G} = 51 \Omega \end{cases} $	_	0.07	0.10	μS
	Turn-Off Time	t _{off}	$T_j = 125^{\circ}C \qquad (Note 1)$	_	0.60	0.90	
Forward Voltage		$V_{\mathbf{F}}$	$I_{F} = 25 \text{ A}, V_{GE} = 0$	_	2.0	2.8	V
Thermal Resistance		D	Transistor		_	0.6	°C/W
		R _{th (j-c)}	Diode	_	_	1.0]

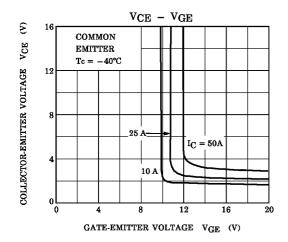
d. Thermistor

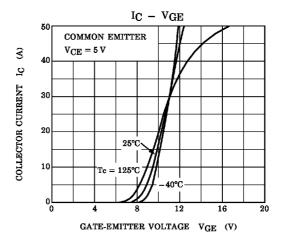

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Zero-power Resistance	R ₂₅	$I_{TM} = 0.2 \text{ mA}, \text{ Tc} = 25^{\circ}\text{C}$	17.31	20	23.14	$\mathbf{k}\Omega$
B Value	B ₂₅ /85	$T_c = 25^{\circ}C/T_c = 85^{\circ}C$	_	3760	_	K

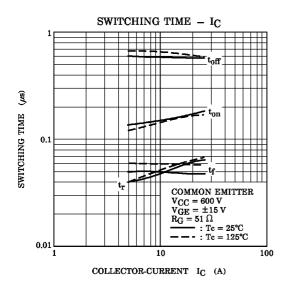

(Note 1) : Switching Time Test Circuit & Timing Chart

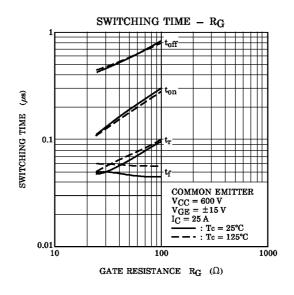


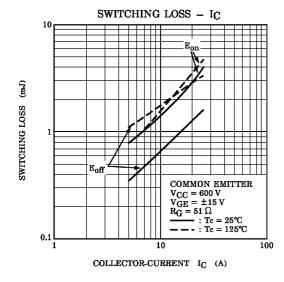


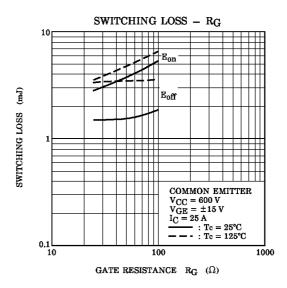

a. Inverter stage/c. Brake stage

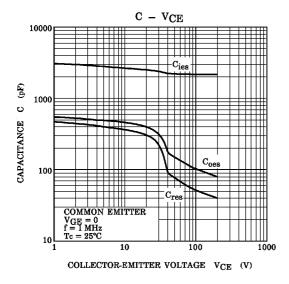


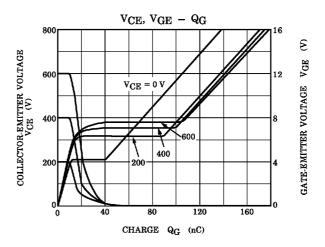


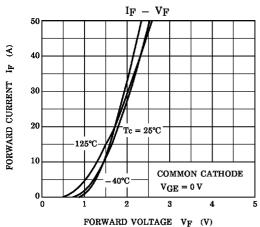


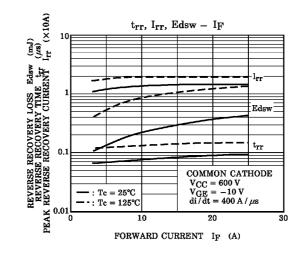


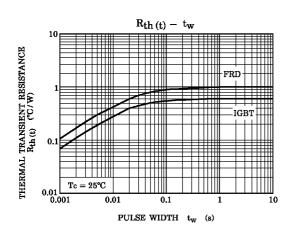


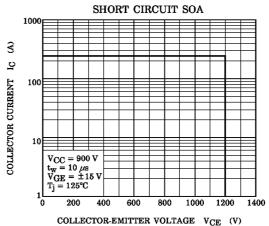


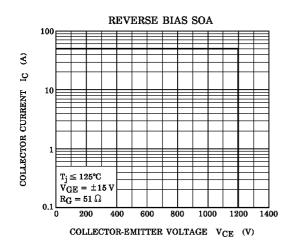


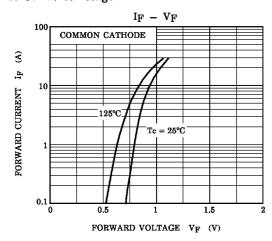


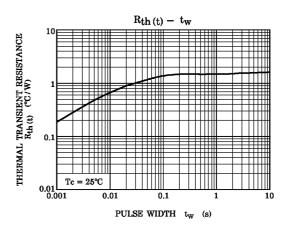












b. Converter stage

