POWER ICs

Stepping Motor Drivers ICs

Outline
The MTD series are monolithic power ICs that can be directly
controlled through a CPU or a Gate Array with few external parts.

Applications

I. Stepping motor drive for office equipment products.
2. Stepping motor drive for industrial robots, and automatic equipment

HSOP-28

Type No.	Operation	Absolute Maximum Ratings ($\mathrm{Ta}^{2}=25^{\circ} \mathrm{C}$)			Characteristics		Outline	
		Vceo [V]	10 [A]	PT [W]				
							Package	Figure
MTDIIIO	Unipolar	80	2	3	Constant-Current chopping function	4-Phase input		
1120			1.2				ZIP-27	101
II20F							HSOP-28	102
\#MTDI361	MOSFET	60	1.5	5		Low Loss MOS output		
MTD200I	Bipolar					Dual H-Bridge	ZIP-27	101
2003		30	1.2			Dual H-Bridge		
2003F				3		Current levels can be selected in 2 bit digital signal	HSOP-28	102
2005		60	1.3	5		Dual H-Bridge	ZIP-27	101
2005F			1.0	3		Selectable slow/fast current decay for microstepping	HSOP-28	102
2006		35	1.3	5		Dual H-Bridge	ZIP-27	101
2006F			1	3		Selectable slow/fast current decay for microstepping	HSOP-28	102
2007		50	1.3	5		Dual H-Bridge	ZIP-27	101
2007F			1	3		Automatic current decay speed	HSOP-28	102
2009		35	1.2	2.8		Two Dual H-Bridges for control of two-stepping motors	HSOP-40	106
- 2015 K		40	1.3	TBD		Two Dual H-Bridges with microstepping control	HSOP-36	TBD

\star : Under development
st: New Product

Power ICs for Interface

Outline

The MTA/MTB series are monolithic power ICs that were developed for use as needle print head drivers in dot matrix printers, and as stepping motor drivers.

Features

1. The input is TTL and CMOS compatible.
2. Large output $\mathrm{IC}=2 \mathrm{~A}$ or $4 \mathrm{~A}, \mathrm{VCE}=60 \mathrm{~V}$ or 80 V
3. Insulated type single in-line packaging with heatsink installed

Applications

1. Head driver for dot matrix printers, ECR and time recorders
2. Stepping motor driver for printers, typewriters, FAX, PPC and XY plotter
3. Driver for all types of solenoids and displays (LED, etc.)

Type No.	IC [A]	VCEO [V]	Pt [W]		Operation			Outline	
			$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{Tc}=25^{\circ} \mathrm{C}$	Input	Output	Circuits	Package	Figure
MTA00IM	2	80	5	35	L Active				
011					H Active	NPN Darlington	9	ZIP-27	101
002		60			L Active	PNP Darlington			
MTB00I	4	80				NPN Darlington	4	SIP-16	103
011					H Active				

MTAOOIM circuit

Shindengen $\because 1 /$ America, Inc.

POWER ICs

IC Power Modules for Switching Power Supplies

Outline
This is an IC module for the primary side main circuits of RCC (Ringing Choke Converter) type switching power supplies.

Features

I. Small number of externally mounted parts
2. Fold-back current limit characteristic
3. Soft start characteristic (MAI000, 2000, 3000 series)
4. High efficiency and low noise (MA3000 series)
5. Insulated type 7-terminal package

MA7

Type No.	Output transistor	Switching control mode	
MA1000 Series	Bipolar	RCC	
MA2000 Series	Bipolar	RCC	-
MA3000 Series	Bipolar	RCC (with quasi resonant)	$* 1$
MA4000 Series	MOSFET	RCC	$* 2$

* I: Control from the outside is easy because main transistor base terminal is joined to one of 7 pins.
* 2: Low noise, Low switching loss.

Type No.				[V] ${ }^{\text {a }}$ [Output capacity	Remarks	Outline	
MAI000 series	MA2000 series ${ }^{4}$	MA3000 series *5	MA4000 series*6				Package	Figure
MAIOIO	MA24IO	-	-	90~132	20	-	MA7	104
1020	2420	-	MA45IO		30			
-	-	MA34IO	-		40			
1030	2430	-	4520		50			
-	2440	-	4530		80			
-	2450	3450	-		100			
1040	2810	3810	-	180~276	40	*3		
1050	2820	-	4810		60			
-	2830	3830	4820		100			

* 3: Wide input-range power supplies $(90-276 \mathrm{~V}$) can be designed by adding a few extra external components except MA3000 Series).
* 4: MA2000 Series : Overvoltage and output On-Off control can be implemented.
* 5: Quasi Resonant power supply can be designed with the same method as usual RCC power supply.
* 6: MA4000 Series : MOSFET is built in for the main converting section which makes high frequency operation possible.

Circuit example for a switching P/S

Automatic AC Line Voltage Selector

Type No.	VDRM [V]	$\begin{gathered} \text { IT (RMS) } \\ {[\mathrm{A}]} \end{gathered}$	$\begin{gathered} \text { Vs (DC) } \\ {[\mathrm{V}]} \end{gathered}$	$\begin{gathered} \mathrm{VC}(\mathrm{DC}) \\ {[\mathrm{V}]} \end{gathered}$	VuL (DC) [V]	Bridge Rectification Holding Function	Tstg $\left[{ }^{\circ} \mathrm{C}\right]$	Top $\left[{ }^{\circ} \mathrm{C}\right]$	Outline	
									Package	Figure
MKIIIO	500	10	90	208		Unavailable	-30~125	-10~100	MA7	104
MKI2IO					25	Available				

Inrush Current Suppression Hybrid IC
MA10

Type No.	$\begin{aligned} & \text { VRM } \\ & {[\mathrm{V}]} \end{aligned}$	$\begin{gathered} \text { lo } \\ {[\mathrm{A}]} \end{gathered}$		VRRM [V]		$\begin{aligned} & \text { IFSM } \\ & {[\mathrm{A}]} \end{aligned}$	$\begin{gathered} \theta \mathrm{ja} \\ {\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]} \end{gathered}$	$\begin{gathered} \theta \mathrm{jc} \\ {\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]} \end{gathered}$	Tstg$\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} \mathrm{Tj} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$		Outline	
		100 V AC	200 V AC	100 V AC	200 V AC					100 V AC	200 V AC	Package	Figure
MJ2400	600	3.4	1.9	200	400	80	27	2.9	$-30 \sim 150$	135	110	MAIO	105

Full Bridge MOSFET Module

N-Channel, Enhancement type

Type No.	Absolute Maximum Ratings				Electrical Characteristics						Outline	
	Tch [${ }^{\circ} \mathrm{C}$]	VDSs [V]	VGss [V]	ID [A]	PT [W]	RDS (ON) (max) [Ω]	$\begin{gathered} \mathrm{C}_{\text {iss }} \\ \text { (typ) } \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \text { Crss } \\ \text { (typ) } \\ {[p \mathrm{p}]} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { ton } \\ \text { (typ) } \end{array} \\ {[\mathrm{ns}]} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { toff } \\ \text { (typ) } \end{array} \\ \text { [ns] } \end{gathered}$		
											Package	Figure
FHI2MB45	150	450	± 30	12	60	0.62	1200	90	90	190	-	93

Shindengen $\oplus 14$ America, Inc.

