MM74C32 Quad 2-Input OR Gate

FAIRCHILD

SEMICONDUCTOR

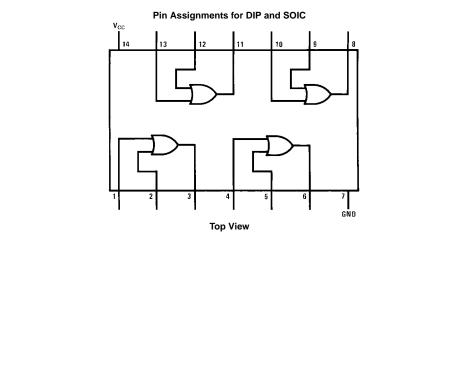
MM74C32 Quad 2-Input OR Gate

General Description

The MM74C32 employs complementary MOS (CMOS) transistors to achieve low power and high noise margin, these gates provide the basic functions used in the implementation of digital integrated circuit systems. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakage current is consumed during static con-

ditions. All inputs are protected against static discharge damage.

Features


- Wide supply voltage range: 3.0V to 15V
- Guaranteed noise margin: 1.0V
- High noise immunity: 0.45V V_{CC} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description			
MM74C32M M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150"					
MM74C32N N14A 1		14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tana and Real. Specify by appending suffix latter "V" to the ordering code					

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	$-0.3V$ to $V_{CC} + 0.3V$
Operating Temperature Range	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V

Absolute Maximum V _{CC}
Lead Temperature
(Soldering, 10 seconds)

18V

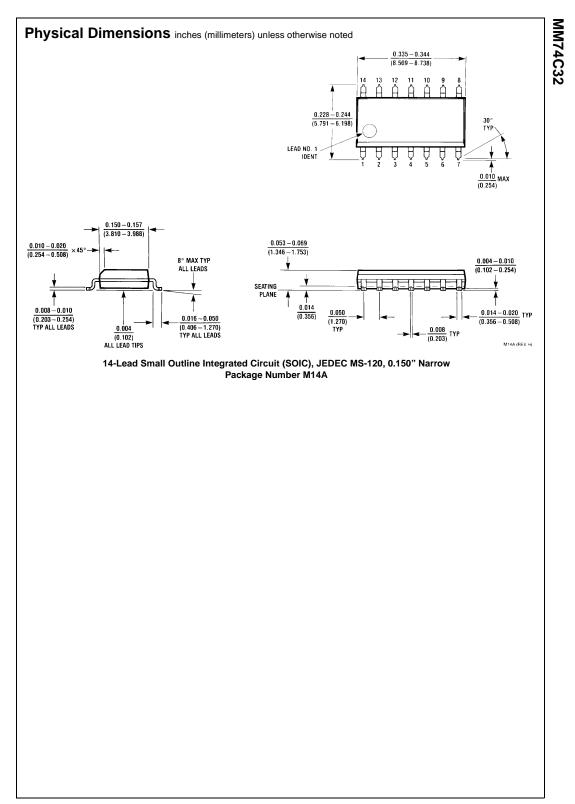
260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

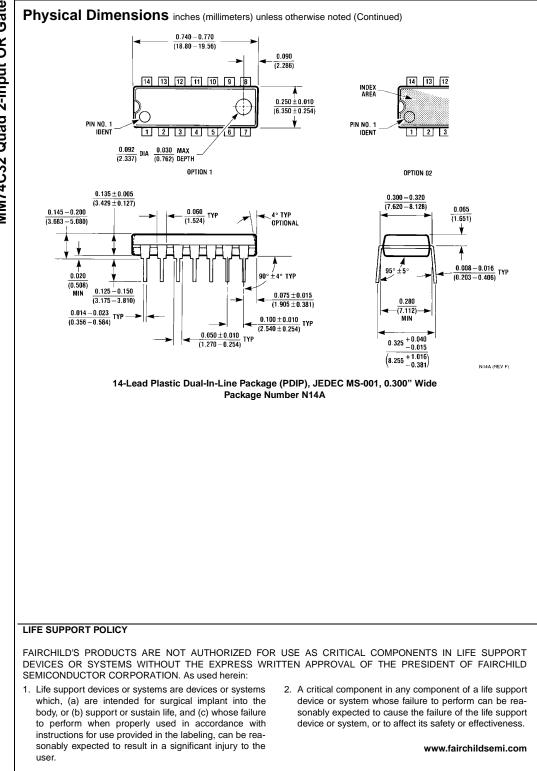
DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	MOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	$V_{CC} = 15V$		0.05	15	μΑ
CMOS/LPTT	LINTERFACE		•			
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
	IVE (see Family Characteristics D	ata Sheet) T _A = 25°C (short circuit curre	ent)			
ISOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)					
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-8.0	-15		mA
	(P-Channel)					
SINK	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = V_{CC}$	1.75	3.6		mA
-	(N-Channel)					
	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}$	8.0	16		mA
I _{SINK}						

AC Electrical Characteristics (Note 2)


$T_{\Delta} = 25^{\circ}C$	C	50 nF	unless	otherwise	specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to	$V_{CC} = 5.0V$		80	150	ns
	Logical "1" or "0"	$V_{CC} = 10V$		35	70	ns
C _{IN}	Input Capacitance	Any Input (Note 3)		5		pF
C _{PD}	Power Dissipation Capacitance	Per Gate (Note 4)		15		pF


Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note— AN-90.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.