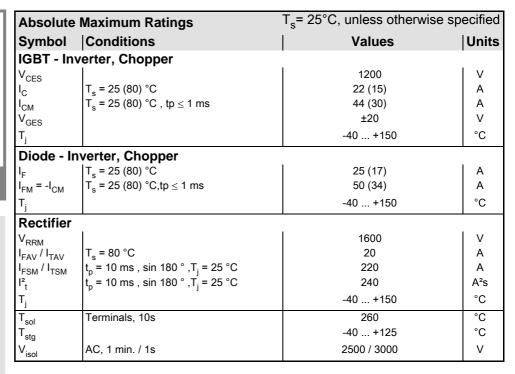
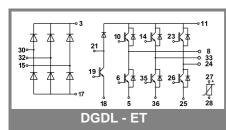


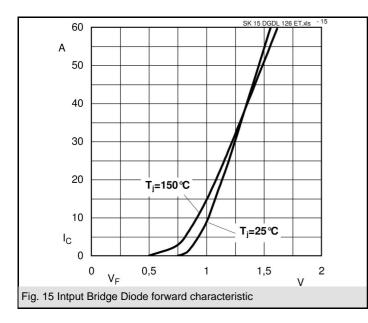
SEMITOP[®] 3

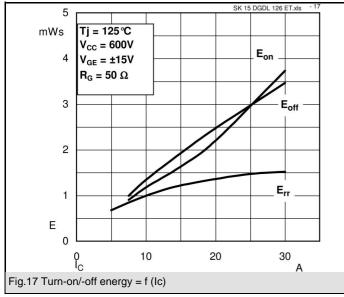
3-phase bridge rectifier + brake chopper +3-phase bridge inverter SK 15 DGDL 126 ET

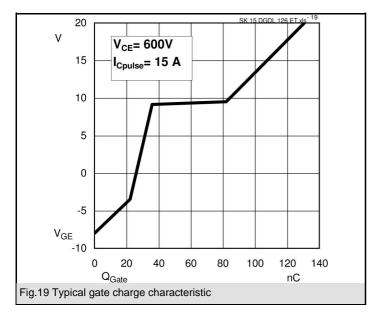

Preliminary Data

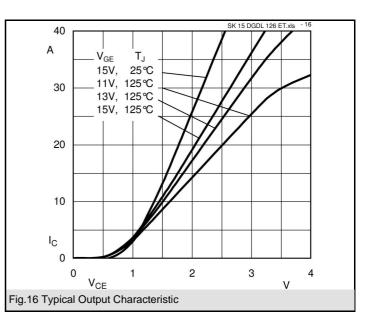
Features

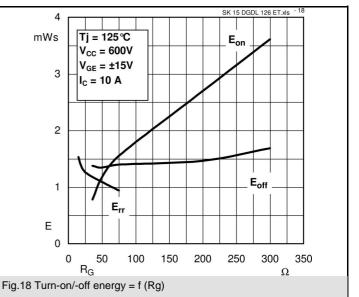

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

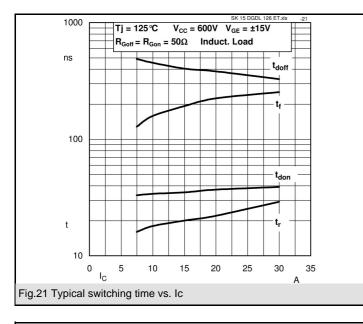

Typical Applications

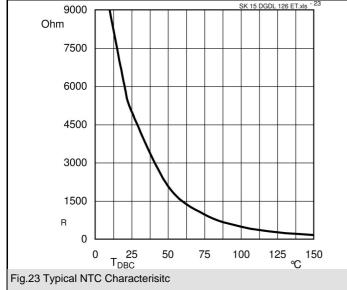

Inverter

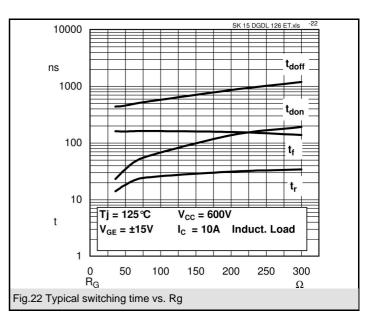


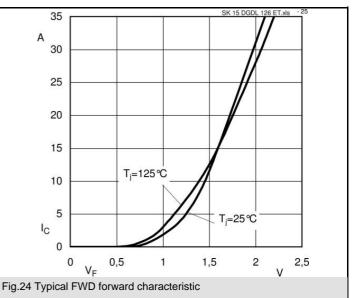

Characteristics		T _s = 25°C	T _s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - Inv	verter, Chopper	·				
V _{CEsat}	I _C = 15 A, T _i = 25 (125) °C		1,7 (2)	2,1	V	
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,6 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _j = 25 °C (125) °C		1 (0,9)		V	
r _T	T _j = 25 °C (125) °C		45 (70)		mΩ	
Cies	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		1,2		nF	
C _{oes}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,1		nF	
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		9,1		nF	
R _{th(j-s)}	per IGBT			1,6	K/W	
t _{d(on)}	under following conditions		25		ns	
t _r	V_{CC} = 600 V, V_{GE} = ± 15 V		25		ns	
t _{d(off)}	I _C = 15 A, T _j = 125 °C		385		ns	
t _f	$R_{Gon} = R_{Goff} = 30 \ \Omega$		90		ns	
Eon	inductive load		2		mJ	
E _{off}			1,8		mJ	
Diode - Ir	verter, Chopper					
V _F = V _{EC}	I _F = 15 A, T _i = 25 (125) °C		1,6 (1,6)		V	
V _(TO)	T _i = 25 °C (125) °C		1 (0,8)		V	
r _T	T _j = 25 °C (125) °C		40 (53)		mΩ	
$R_{th(j-s)}$	per diode			2,1	K/W	
I _{RRM}	under following conditions		25		А	
Q _{rr}	I _F = 15 A, V _R = 600 V		3		μC	
Err	V _{GE} = 0 V, T _i = 125 °C		1,1		mJ	
	di _{F/dt} = 900 Å/µs					
Diode rec	tifier				•	
V _F	I _F = 15 A, T _i = 25 °C		1,1		V	
V _(TO)	T _i = 150 °C		0,9		V	
r _T	T _i = 150 °C		20		mΩ	
$R_{th(j-s)}$	per diode			2	K/W	
	tur sensor	•				
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω	
Mechanic	al data	<u> </u>			•	
w			30		g	
M _s	Mounting torque			2,5	Nm	

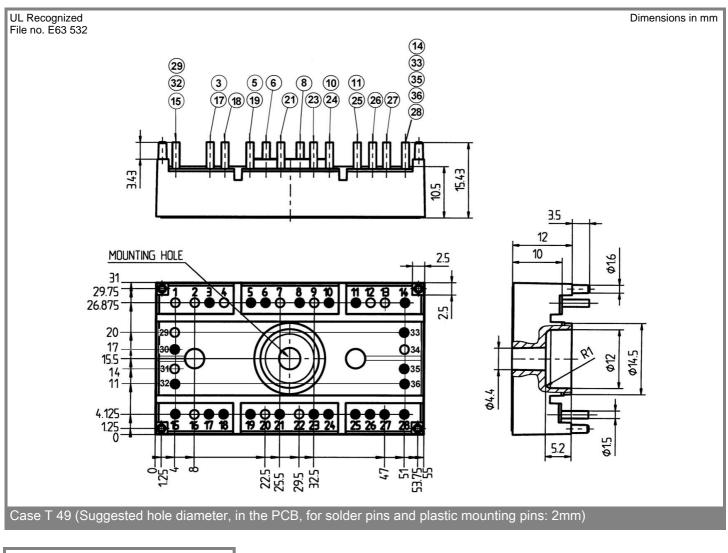


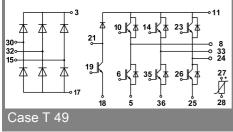












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.