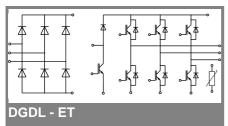



3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 30 DGDL 066 ET

**Target Data** 

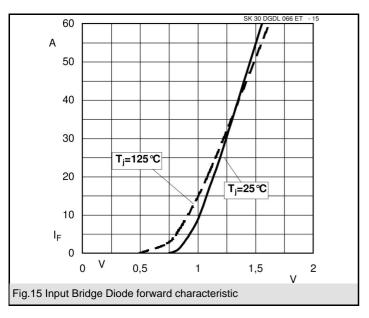
#### **Features**

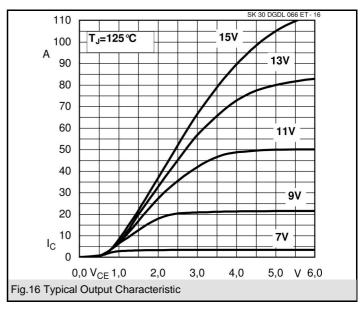
- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

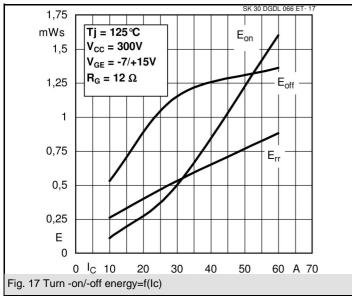

#### Typical Applications\*

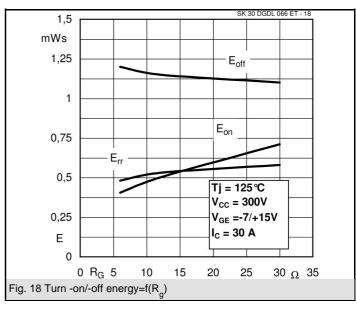
- Inverter up to 10 kVA
- Typ. motor power 4 kW

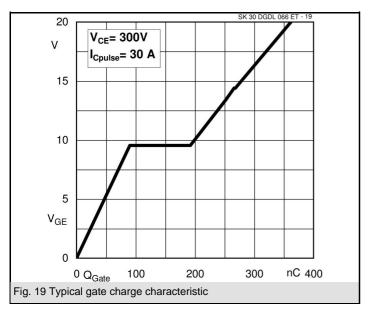
#### Remarks

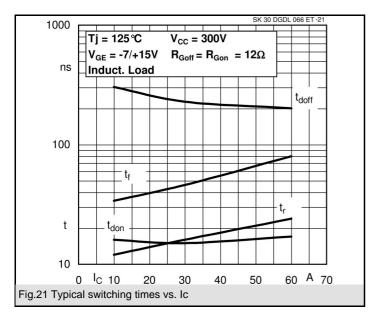

- V<sub>CE,sat</sub> , V<sub>F</sub> = chip level value
  SC data:

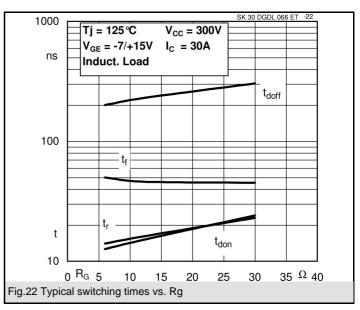

 $\begin{array}{l} t_{p}{\le}6\mu s; V_{GE}{\le}15V; T_{j}{=}150^{\circ}c; V_{cc}{=}360 \\ V_{isol} = 3000V \; AC, 50Hz, 1s \end{array}$ 

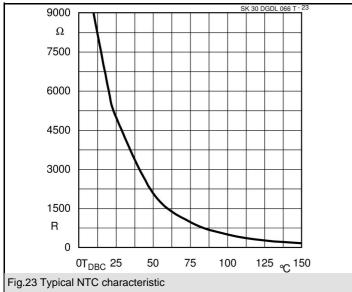


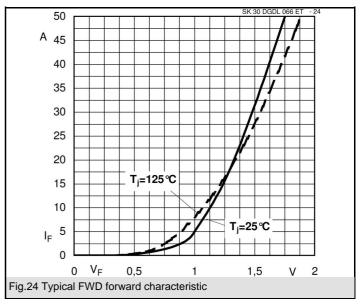


| <b>Absolute Maximum Ratings</b> $T_s = 25^{\circ}C$ , unless otherwise specified |                                                                                                     |                       |             |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|-------------|--|--|--|--|
| Symbol                                                                           | Conditions                                                                                          | Values                |             |  |  |  |  |
| IGBT - Inverter, chopper                                                         |                                                                                                     |                       |             |  |  |  |  |
| V <sub>CES</sub>                                                                 | T <sub>s</sub> = 25 (70) °C, T <sub>j</sub> = 175 °C                                                | 600<br>40 (31)        | V<br>A      |  |  |  |  |
| I <sub>C</sub><br>I <sub>CRM</sub><br>V <sub>GES</sub>                           | $T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$<br>$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$ | 35 (26)<br>60<br>± 20 | A<br>A<br>V |  |  |  |  |
| T <sub>j</sub>                                                                   |                                                                                                     | -40 + 175             | °C          |  |  |  |  |
| Diode - Inverter, chopper                                                        |                                                                                                     |                       |             |  |  |  |  |
| I <sub>F</sub>                                                                   | $T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$                                                      | 32 (24)               | Α           |  |  |  |  |
| I <sub>F</sub>                                                                   | $T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$                                                      | 36 (28)               | Α           |  |  |  |  |
| I <sub>FRM</sub>                                                                 | $I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$                                                          | 60                    | Α           |  |  |  |  |
| Diode - Rectifier                                                                |                                                                                                     |                       |             |  |  |  |  |
| $V_{RRM}$                                                                        |                                                                                                     | 800                   | V           |  |  |  |  |
| I <sub>F</sub>                                                                   | $T_s = 70  ^{\circ}C$                                                                               | 35                    | Α           |  |  |  |  |
| I <sub>FSM</sub>                                                                 | $t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$                                 | 370                   | Α           |  |  |  |  |
| i²t                                                                              | $t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$                                     | 680                   | A²s         |  |  |  |  |
| T <sub>j</sub>                                                                   |                                                                                                     | -40 <b>+</b> 175      | °C          |  |  |  |  |
| T <sub>sol</sub>                                                                 | Terminals, 10 s                                                                                     | 260                   | °C          |  |  |  |  |
| T <sub>stg</sub>                                                                 |                                                                                                     | -40 <b>+</b> 125      | °C          |  |  |  |  |
| V <sub>isol</sub>                                                                | AC, 1 min.                                                                                          | 2500                  | V           |  |  |  |  |

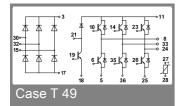

|   | Character                           | istics                                                           | $T_s = 25$ °C , unless otherwise specified |             |             |       |  |  |  |
|---|-------------------------------------|------------------------------------------------------------------|--------------------------------------------|-------------|-------------|-------|--|--|--|
|   | Symbol                              | Conditions                                                       | min.                                       | typ.        | max.        | Units |  |  |  |
|   | IGBT - Inv                          | GBT - Inverter, chopper                                          |                                            |             |             |       |  |  |  |
|   | V <sub>CE(sat)</sub>                | $I_{Cnom} = 30 \text{ A}, T_j = 25 (150) ^{\circ}\text{C}$       |                                            |             | 1,85 (2,05) | V     |  |  |  |
|   | $V_{GE(th)}$                        | $V_{GE} = V_{CE}$ , $I_C = 0.43$ mA                              | 5                                          | 5,8         | 6,5         | V     |  |  |  |
|   | $V_{CE(TO)}$                        | T <sub>j</sub> = 25 (150) °C                                     |                                            | 0,9 (0,85)  | 1 (0,9)     | V     |  |  |  |
|   | r <sub>CE</sub>                     | $T_{j} = 25 (150)  ^{\circ}C$                                    |                                            | 18 (27)     | 28 (38)     | mΩ    |  |  |  |
|   | C <sub>ies</sub>                    | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                            | 1,63        |             | nF    |  |  |  |
|   | C <sub>oes</sub>                    | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                            | 0,11        |             | nF    |  |  |  |
|   | C <sub>res</sub>                    | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                            | 0,05        |             | nF    |  |  |  |
| L | R <sub>th(j-s)</sub>                | per IGBT                                                         |                                            | 1,65        |             | K/W   |  |  |  |
|   | $t_{d(on)}$                         | under following conditions                                       |                                            | 15          |             | ns    |  |  |  |
|   | t <sub>r</sub>                      | $V_{CC} = 300 \text{ V}, V_{GE} = -7/+15$                        |                                            | 12          |             | ns    |  |  |  |
|   | t <sub>d(off)</sub>                 | I <sub>Cnom</sub> = 30 A, T <sub>j</sub> = 125 °C                |                                            | 228         |             | ns    |  |  |  |
|   | t <sub>f</sub>                      | $R_{Gon} = R_{Goff} = 12 \Omega$                                 |                                            | 46          |             | ns    |  |  |  |
| L | E <sub>on</sub> (E <sub>off</sub> ) | inductive load                                                   |                                            | 0,55 (1,15) |             | mJ    |  |  |  |
|   | Diode - Inverter, chopper           |                                                                  |                                            |             |             |       |  |  |  |
|   |                                     | I <sub>F</sub> = 30 A, T <sub>j</sub> = 25 (150) °C              |                                            | 1,5 (1,5)   | 1,7 (1,7)   | V     |  |  |  |
|   | $V_{(TO)}$                          | T <sub>j</sub> = 25 (150) °C                                     |                                            | 1 (0,9)     |             | V     |  |  |  |
|   | r <sub>T</sub>                      | T <sub>j</sub> = 150 () °C                                       |                                            | 20          |             | mΩ    |  |  |  |
|   | $R_{th(j-s)}$                       | per diode                                                        |                                            | 2,3         |             | K/W   |  |  |  |
|   | I <sub>RRM</sub>                    | under following conditions                                       |                                            | 19,1        |             | Α     |  |  |  |
|   | $Q_{rr}$                            | I <sub>Fnom</sub> = 30 A, V <sub>R</sub> = 300 V                 |                                            | 1,8         |             | μC    |  |  |  |
|   | E <sub>rr</sub>                     | $V_{GE} = 0 \text{ V}, T_j = 125^{\circ}\text{C}$                |                                            | 0,53        |             | mJ    |  |  |  |
|   |                                     | di <sub>F</sub> /dt = -950 A/μs                                  |                                            |             |             |       |  |  |  |
| ſ | Diode rectifier                     |                                                                  |                                            |             |             |       |  |  |  |
|   | $V_{F}$                             | I <sub>Fnom</sub> = 25 A, T <sub>i</sub> = 25 °C                 |                                            | 1,1         |             | V     |  |  |  |
|   | $V_{(TO)}$                          | T <sub>i</sub> = 150 °C                                          |                                            | 0,8         |             | V     |  |  |  |
|   | r <sub>T</sub>                      | T <sub>j</sub> = 150 °C                                          |                                            | 15          |             | mΩ    |  |  |  |
|   | R <sub>th(j-s)</sub>                | per diode                                                        |                                            | 1,7         |             | K/W   |  |  |  |
| ſ | Temperature Sensor                  |                                                                  |                                            |             |             |       |  |  |  |
|   | R <sub>ts</sub>                     | 5 %, T <sub>r</sub> = 25 (100) °C                                |                                            | 5000(493)   |             | Ω     |  |  |  |
| ľ | Mechanica                           | echanical Data                                                   |                                            |             |             |       |  |  |  |
| ١ | W                                   |                                                                  |                                            | 30          |             | g     |  |  |  |
|   | $M_s$                               | Mounting torque                                                  | 2,25                                       |             | 2,5         | Nm    |  |  |  |
|   |                                     |                                                                  |                                            |             |             |       |  |  |  |

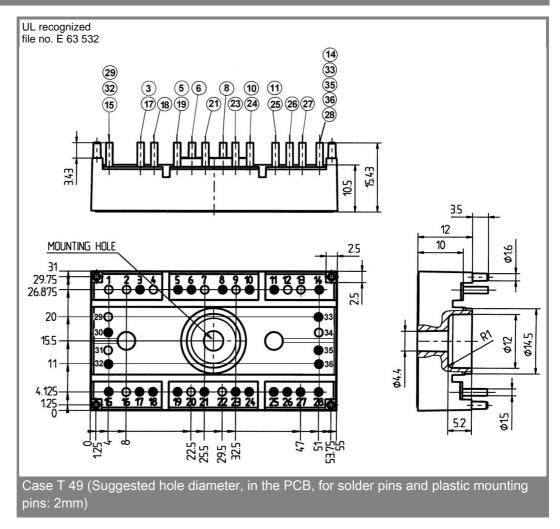













This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

<sup>\*</sup> The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.