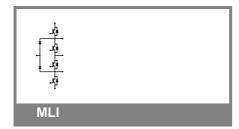


IGBT Module

SK30MLI066

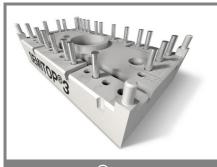
Target Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technologyCAL technology FWD

Typical Applications*

- 3 Level Inverter
- UPS


Remarks

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified					
Symbol	Conditions			Values	Units
IGBT			•		
V_{CES}	T _j = 25 °C T _j = 175 °C			600	V
I _C	T _j = 175 °C	T _s = 25 °C		40	Α
		$T_s = 70 ^{\circ}C$		31	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			60	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C		6	μs
Inverse D	iode				
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		37	Α
		$T_s = 70 ^{\circ}C$		30	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		160	Α
Freewhee	ling Diode				
I _F	T _j = 175 °C	T_s = 25 °C		36	Α
		$T_s = 70 ^{\circ}C$		28	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		160	Α
Module					
I _{t(RMS)}					Α
T _{vj}				-40 + 175	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics T		T _s =	s = 25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	•						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.43$ mA		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0016	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA	
V _{CE0}		T _j = 25 °C		0,9	1,1	V	
		T _j = 150 °C		0,8	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		18	28	mΩ	
		T _j = 150°C		27	38	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V			1,45		V	
		$T_j = 150^{\circ}C_{chiplev.}$		1,65		V	
C _{ies}				1,63		nF	
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		0,18		nF	
C _{res}				0,05		nF	
Q_G	V _{GE} =-7V+15V			275		nC	
t _{d(on)}				24		ns	
lt _r	$R_{Gon} = 25 \Omega$	V _{CC} = 300V		27		ns	
E _{on}	di/dt = 2335 A/μs	I _C = 30A		0,97		mJ	
t _{d(off)}	$R_{Goff} = 25 \Omega$	T _j = 150 °C		328		ns	
t _f	di/dt = 2335 A/µs	V _{GE} = -7/+15 V		54		ns	
E_{off}				1,77		mJ	
$R_{th(j-s)}$	per IGBT			1,65		K/W	

SEMITOP® 3

IGBT Module

SK30MLI066

Target Data

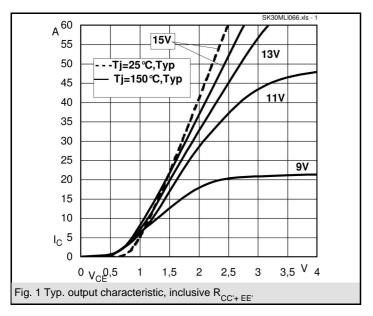
Features

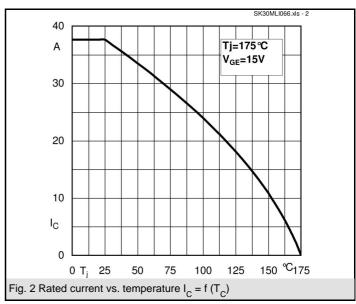
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD

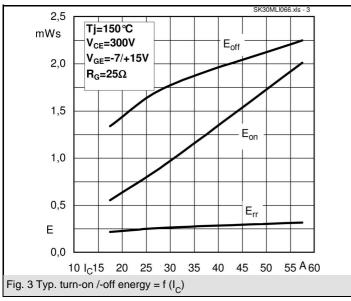
Typical Applications*

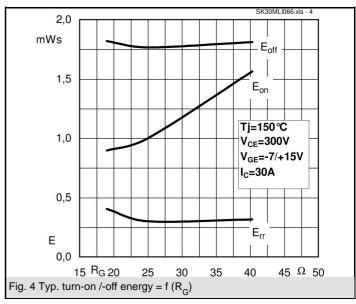
- 3 Level Inverter
- UPS

Remarks


- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode


Characteristics								
Symbol	Conditions	l	min.	typ.	max.	Units		
Inverse Diode (Antiparallel Diode)								
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,5		V		
		T _j = 150 °C _{chiplev.}		1,5		V		
V _{F0}		T _j = 25 °C		1		V		
		T _j = 150 °C		0,9		V		
r _F		T _j = 25 °C		16,7	20	mΩ		
		T _j = 150 °C		20	23,3	$m\Omega$		
I _{RRM}	I _F = 30 A	T _j = 150 °C		30		Α		
Q_{rr}	di/dt = 2335 A/µs			1,6		μC		
E _{rr}	V _R = 300V			0,26		mJ		
$R_{th(j-s)D}$	per diode			2,3		K/W		
Freewheeling Diode (Neutral Clampo diode)								
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,5		V		
		T _j = 150 °C _{chiplev.}		1,5		V		
V_{F0}		T _j = 25 °C		1		V		
		T _j = 150 °C		0,9		V		
r _F		T _j = 25 °C		16,7	20	V		
		T _j = 150 °C		20	23,3	V		
I _{RRM}	I _F = 30 A	T _j = 150 °C				Α		
Q_{rr}	di/dt = -950 A/µs					μC		
E _{rr}	V _R =300V			0,26		mJ		
$R_{th(j-s)FD}$	per diode			2,3		K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				30		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

