

IGBT Module

SK50GD12T4T

Target Data

Features

- One screw mounting module
- Fully compatible with SEMITOP ${ }^{\circledR} 1,2,3$
- Improved thermal performances by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

- $\mathrm{V}_{\mathrm{CE}, \text { sat }}, \mathrm{V}_{\mathrm{F}}=$ chip level value

Absolute Maximum Ratings		$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$, unless otherwise specified		
Symbol	\|Conditions		Values	Units
IGBT				
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1200	V
I_{C}	$\mathrm{T}_{\mathrm{j}}=175{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	75	A
		$\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$	60	A
$I_{\text {CRM }}$	$\mathrm{I}_{\mathrm{CRM}}=3 \times \mathrm{I}_{\text {Cnom }}$		150	A
$\mathrm{V}_{\text {GES }}$			± 20	V
$\mathrm{t}_{\mathrm{psc}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=800 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}} \leq 15 \mathrm{~V} ; \\ & \mathrm{VCES}<1200 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	10	$\mu \mathrm{s}$
Inverse Diode				
I_{F}	$\mathrm{T}_{\mathrm{j}}=175{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	60	A
		$\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$	45	A
$\mathrm{I}_{\text {FRM }}$	$\mathrm{I}_{\text {FRM }}=3 \times \mathrm{I}_{\text {Fnom }}$		150	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$; half sine wave	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	265	A
Module				
$\mathrm{I}_{\text {t(RMS }}$				A
T_{vj}			-40 ... +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$			-40 ... +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	AC, 1 min.		2500	V

Characteristics		$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$, unless otherwise specified			
IGBT					
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=1,7 \mathrm{~mA}$		$5 \quad 5,8$	6,5	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {CES }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		0,01	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IGES	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		600	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{V}_{\text {CE0 }}$		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \hline 1,1 \\ 1 \end{gathered}$	$\begin{aligned} & 1,3 \\ & 1,2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{r}_{\text {CE }}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
$\mathrm{V}_{\text {CE(sat) }}$	${ }^{\mathrm{I}} \mathrm{Com}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}_{\text {chiplev. }} \\ & \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}_{\text {chiplev. }} \end{aligned}$	$\begin{aligned} & 1,85 \\ & 2,25 \end{aligned}$	$\begin{aligned} & \hline 2,05 \\ & 2,45 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=25, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	$\begin{gathered} 2,77 \\ 0,2 \\ 0,16 \end{gathered}$		$\begin{aligned} & \mathrm{nF} \\ & \mathrm{nF} \\ & \mathrm{nF} \end{aligned}$
Q_{G}	$\mathrm{V}_{\mathrm{GE}}=-7 \mathrm{~V} . . .+15 \mathrm{~V}$		375		nC
$\mathrm{R}_{\text {Gint }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		4		Ω
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{d}(\text { on })} \\ \mathrm{t}_{\mathrm{r}} \\ \mathrm{E}_{\mathrm{on}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{Gon}}=32 \Omega \\ & \mathrm{di} / \mathrm{dt}=920 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 63 \\ & 65 \\ & 8,3 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~mJ} \end{aligned}$
$\begin{array}{\|l} \hline t_{\left.\mathrm{d}_{\text {((ff }}\right)} \\ t_{\mathrm{f}} \\ \mathrm{E}_{\text {off }} \\ \hline \end{array}$	$\begin{aligned} & R_{\mathrm{Goff}}=32 \Omega \\ & \mathrm{di} / \mathrm{dt}=920 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 521 \\ 80 \\ 5 \end{gathered}$		ns ns mJ
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{s})}$	per IGBT		0,65		K/W

GD-T

SEMITOP ${ }_{4} 4$

IGBT Module

SK50GD12T4T

Target Data

Features

- One screw mounting module
- Fully compatible with SEMITOP ${ }^{\circledR} 1,2,3$
- Improved thermal performances by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

- $\mathrm{V}_{\mathrm{CE}, \mathrm{sat}}, \mathrm{V}_{\mathrm{F}}=$ chip level value

Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse Diode						
$\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{EC}}$	$\mathrm{I}_{\text {Fnom }}=50 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}_{\text {chiplev. }}$		2,2	2,55	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}_{\text {chiplev. }}$		2,18	2,5	V
V_{Fo}		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1,3	1,5	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		0,9	1,1	V
r_{F}		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		19	21	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		26	28	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {RRM }}$	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}$	$\mathrm{T}_{\mathrm{j}}=15{ }^{\circ} \mathrm{C}$		30		A
Q_{rr}	di/dt $=920 \mathrm{~A} / \mathrm{\mu s}$			7,2		$\mu \mathrm{C}$
E_{rr}	$\mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}$			2,15		mJ
$\mathrm{R}_{\text {th(}}^{\text {-s }) \mathrm{D}}$	per diode			0,97		K/W
M_{s}	to heat sink		2,5		2,75	Nm
w				60		g
Temperature sensor						
R_{100}	$\mathrm{T}_{\mathrm{s}}=100^{\circ} \mathrm{C}\left(\mathrm{R}_{25}=5 \mathrm{k} \Omega\right)$			493 55%		Ω

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

Fig. 3 Typ. turn-on /-off energy $=f\left(I_{C}\right)$

Fig. 2 Rated current vs. temperature $I_{C}=f\left(T_{s}\right)$

Fig. 4 Typ. turn-on /-off energy $=f\left(R_{G}\right)$

Fig. 6 Typ. gate charge characteristic

Case 174 (Suggested hole diameter for the solder pins in the circuit board: 2 mm . Suggested hole diameter for the mounting pins in the circuit board: $3,6 \mathrm{~mm}$)

