SK 55 TAA

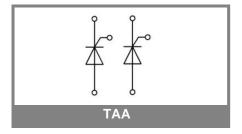
SEMITOP®2

Two separated thyristors

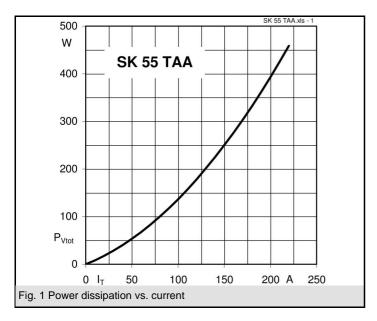
SK 55 TAA

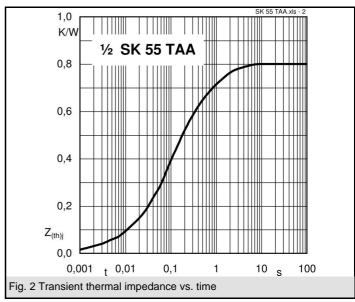
Target Data

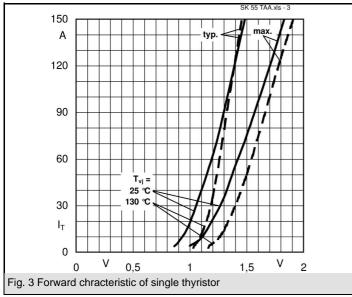
Features

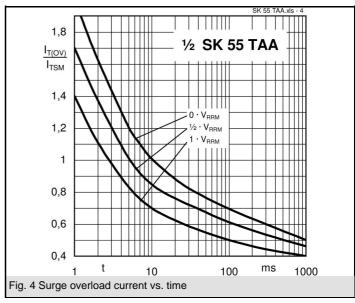

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Up to 1600 reverse voltage
- High surge currents

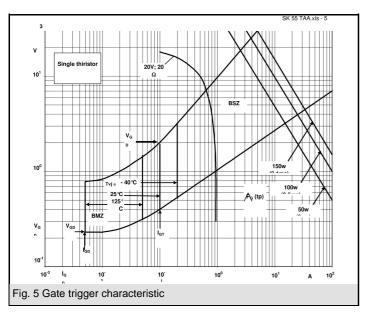
Typical Applications

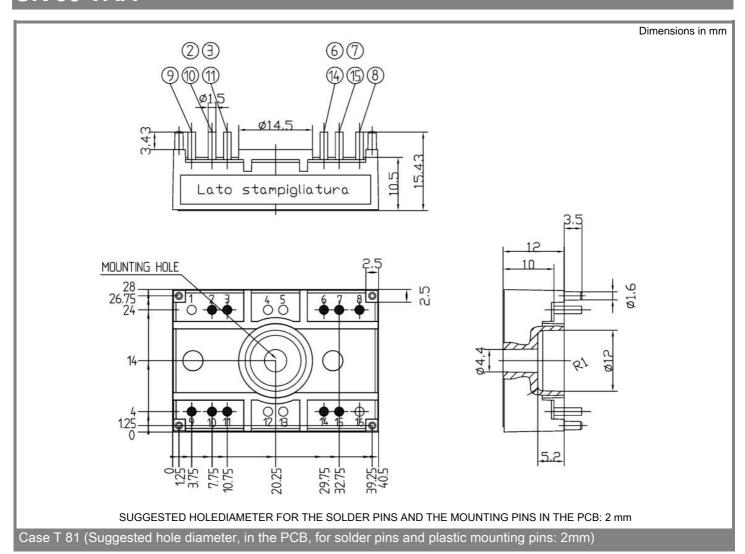

- Brake chopper
- Soft starters

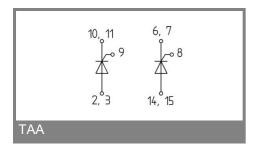

V_{RSM}	V_{RRM}, V_{DRM}	I _T = 55 A
V	V	(T _s = 80 °C)
900	800	SK55TAA08
1300	1200	SK55TAA12
1700	1600	SK55TAA16


Characte	ristics	Ts = 25°C unless otherwi	less otherwise specified	
Symbol	Conditions	Values	Units	
I _T	Ts = 100°C	36	Α	
I _T	Ts = 80°C	55	Α	
			Α	
I _{TSM} /I _{FSM}	T _{vj} = 25 (125) °C; 10 ms	1000 (900)	А	
I²t	$T_{vj} = 25 (125) ^{\circ}\text{C}$; half sine wave, 10 ms	5000 (4000)	A²s	
T _{stg}		-40 + 125	°C	
T _{solder}	terminals, 10 s	260	°C	
Thyristor	•			
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs	
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 60 Hz	50	A/µs	
tq	T _{vi} = 125 °C; typ.	80	μs	
I _H	T _{vi} = 25 °C; typ. / max.	100 / 200	mA	
I_L	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	200 / 500	mA	
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 80 \text{A}); \text{max}.$	1,2	V	
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,85	V	
r _T	T _{vi} = 125 °C	max. 5,7	mΩ	
I _{DD} ; I _{RD}	T_{vj}^{rj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 15	mA	
R _{th(j-s)}	cont. per thyristor	0,8	K/W	
$T_{vj}^{(i)(j-3)}$, ,	-40 +125	°C	
$V_{GT}^{v_j}$	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	2	V	
I _{GT}	$T_{vi}^{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA	
V _{GD}	T_{vi}^{vj} = 125 °C; d.c.	0,25	V	
I _{GD}	$T_{vi} = 125 ^{\circ}\text{C}; \text{d.c.}$	5	mA	
Diode	,		L	
V_{F}	$T_{vi} = {^{\circ}C}; (I_F = A); max.$		V	
V _(TO)	$T_{vi} = {^{\circ}C}$		V	
r _T	T _{vi} = °C		mΩ	
I _{RD}	$T_{vj}^{r} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA	
R _{th(j-s)}	, , , , , , , , , , , , , , , , , , , ,		K/W	
T _{vi}			°C	
Mechanic	cal data		I	
V_{isol}	AC 50Hz, r.m.s. 1min (1sec)	2500 (3000)	V	
M ₁	mounting torque	2	Nm	
w		19	g	
Case	SEMITOP®2	T 81		




SK 55 TAA





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.