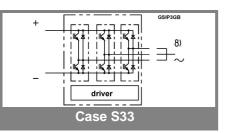

SKiiP 1813GB123-3DL

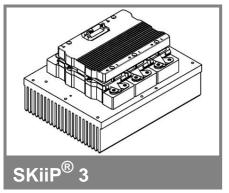

2-pack-integrated intelligent Power System

Power Section SKiiP 1813GB123-3DL

Preliminary Data

Features

- SKiiP technology inside
- Trench IGBTs
- CAL HD diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 3 power section)
- UL recognized File no. E63532 (SKiiP[®] 3 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Absolute	Maximum Ratings T _s	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1800 (1350)	Α			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	1410 (1070)	Α			
I _{FSM}	$T_j = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}$	12960	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	840	kA²s			
T _j , (T _{stg})		- 40 + 150 (125)	°C			
V _{isol}	rms, AC, 1 min, main terminals to heat sink	3000	V			
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	Α			
	T _{terminal} <115 °C					

Characteristics				T _s = 25 °C unless otherwise specified					
Symbol	Symbol Conditions				min.	typ.	max.	Units	
IGBT	•								
V _{CEsat}	I _C = 900 A measured at	A, T _j = 25 (1 terminal	125) °C;			1,7 (1,9)	2,1	V	
V_{CEO}	$T_i = 25 (12)$	25) °C; at t	erminal			0,9 (0,8)	1,1 (1)	V	
r_{CE}		25) °C; at t				0,9 (1,3)	1,3 (1,6)	mΩ	
I _{CES}	$V_{GE}^{J} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_{i} = 25 (125) \text{ °C}$				3,6 (108)		mA		
$E_{on} + E_{off}$	$I_{\rm C}^{\rm J}$ = 900 A, $V_{\rm CC}$ = 600 V					mJ			
	T _j = 125 °(C, V _{CC} = 9	00 V			585		mJ	
R _{CC+EE}	terminal c	hip, T _i = 25	5 °C			mΩ			
L _{CE}	top, bottor	m ´				4		nΗ	
C _{CHC}	per phase	, AC-side				5,1		nF	
Inverse o	Inverse diode								
$V_F = V_{EC}$	I _F = 900 A measured at	., T _j = 25 (1 terminal	25) °C			1,5 (1,5)	1,8	V	
V_{TO}	$T_i = 25 (12)$	25) °C				0,9 (0,7)	1,1 (0,9)	V	
r _T	$T_i = 25 (12)$					0,7 (0,9)	0,8 (1)	mΩ	
E _{rr}	$I_{\rm C} = 900 \text{A}$	$V_{CC} = 60$	0 V			63		mJ	
	T _j = 125 °(C, V _{CC} = 9	00 V			84		mJ	
Mechani	cal data								
M_{dc}	DC termin	als, SI Uni	ts		6		8	Nm	
M _{ac}	AC terminals, SI Units			13		15	Nm		
W	SKiiP® 3 System w/o heat sink				2,4		kg		
w	heat sink					7,5		kg	
Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)									
R _{th(j-s)I}	per IGBT						0,02	K/W	
R _{th(j-s)D}	per diode						0,02	K/W	
Z _{th}	l'	(max. valı	ies)		tau _i (s)				
-th	1	2	3	4	1	2	3	4	
$Z_{\text{th(j-r)I}}$	3,4	9,6	7	0	363	0,18	0,04	1	
$Z_{\text{th(j-r)D}}^{\text{tr(j-r)I}}$	12	12	18	20	30	5	0,25	0,04	
Z _{th(r-a)}	2,1	20	5,5	1,4	210	85	11	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1813GB123-3DL

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2)	3000	V		
V _{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f	switching frequency	10	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

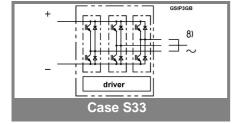
2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 1813GB123-3DL

Preliminary Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and


DC-bus voltage (option)

- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protection against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 40/85/56 (SKiiP[®] 3 gate driver)

Characte	eristics	(T _a = 25 °C			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+37*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
tpERRRESET	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply		1500		Α
	voltage for external components				
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		1875		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not implemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com. Further questions can be placed via http://faq.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

