SKiiP 25AC125V10

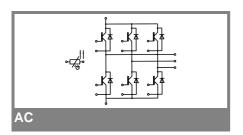
MiniSKiiP® 2

3-phase bridge inverter

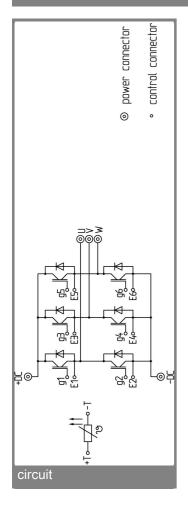
SKiiP 25AC125V10

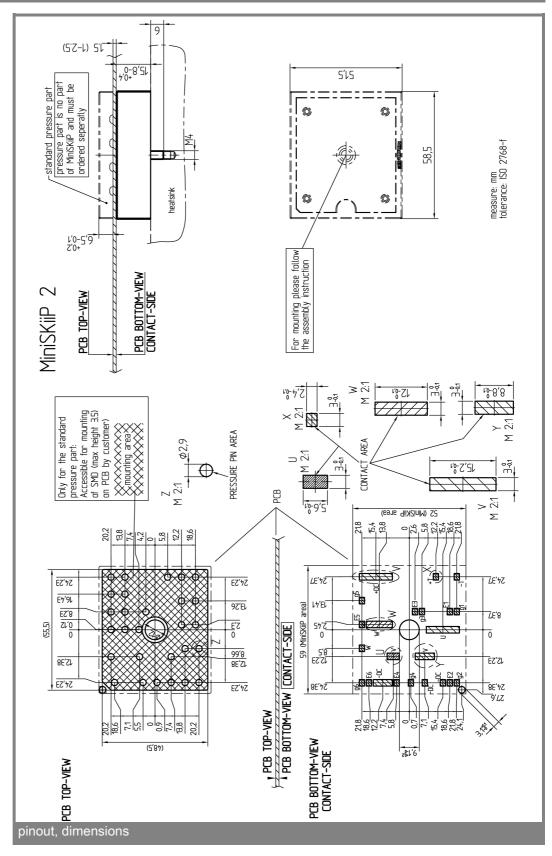
Target Data

Features


- Ultrafast NPT IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 20 kVA
- Typical motor power 11 kW


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	52 (39)	Α					
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	104 (78)	Α					
V_{GES}	·	± 20	V					
T_j		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	67 (50)	Α					
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	134 (100)	Α					
T_j	, i	- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	100	Α					
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characteristics		T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V_{CEsat}	I _C = 50 A, T _i = 25 (125) °C		3,5 (4,1)	3,9 (4,5)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 2 \text{ mA}$	4,5	5,5	6,5	V			
V _{CE(TO)}	T _i = 25 (125) °C		1,5 (1,8)	1,7 (2)	V			
r _T	T _i = 25 (125) °C		40 (46)	44 (50)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		3,1		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,4		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,4		nF			
$R_{th(j-s)}$	per IGBT		0,5		K/W			
t _{d(on)}	under following conditions		100		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		60		ns			
t _{d(off)}	I _C = 50 A, T _i = 125 °C		400		ns			
t _f	$R_{Gon} = R_{Goff} = 12 \Omega$		20		ns			
E _{on}	inductive load		5,9		mJ			
E _{off}			3,1		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _F = 50 A, T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V			
V _(TO)	T _i = 25 (125) °C		1,3 (1)	1,5 (1,2)	V			
r _T	T _i = 25 (125) °C		14 (16)	20 (22)	mΩ			
$R_{th(j-s)}$	per diode		0,7		K/W			
I _{RRM}	under following conditions		40		Α			
Q _{rr}	I _F = 50 A, V _R = 600 V		8		μC			
E _{rr}	V _{GE} = 0 V, T _i = 125 °C		2		mJ			
	$di_F/dt = 800 \text{ A/}\mu\text{s}$							
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
m			65		g			
M_s	Mounting torque	2		2,5	Nm			

SKiiP 25AC125V10

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.