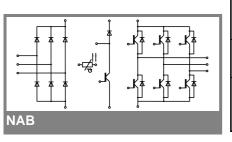

SKiiP 25NAB066V1

MiniSKiiP[®] 2

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 25NAB066V1

Target Data

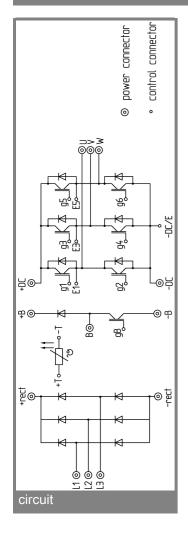
Features

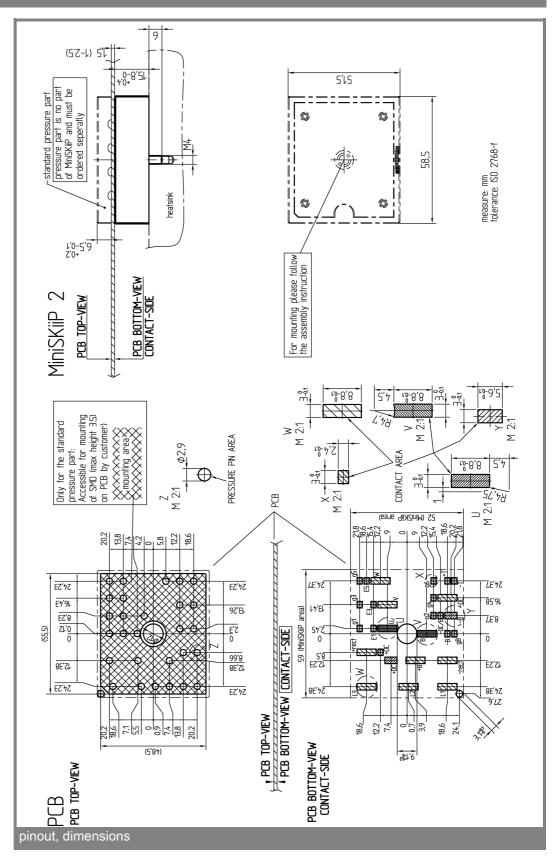

- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

- Inverter up to 10 kVA
- Typical motor power 4,0 kW

Remarks


 Case temperature limited to T_C = 125 °C max.



Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	T _s = 25 (70) °C		Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α				
V_{GES}		± 20	V				
T_j		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C		Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α				
T _j		- 40 + 175	°C				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	46	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	370	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	680	A²s				
T _j		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	60	Α				
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Character	ristics	T _s = 25 °C,	s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CEsat}	I _C = 30 A, T _i = 25 (125) °C	1	1,45 (1,65)	1,9 (2,05)	V				
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$		5,8		V				
V _{CE(TO)}	T _j = 25 (125) °C		0,9 (0,85)	1 (0,9)	V				
r _T	$T_{j} = 25 (125) ^{\circ}C$		27 (37)	40 (50)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		-		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		-		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		-		nF				
$R_{th(j-s)}$	per IGBT		1,05		K/W				
t _{d(on)}	under following conditions		-		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		-		ns				
$t_{d(off)}$	$I_C = 30 \text{ A}, T_j = 125 ^{\circ}\text{C}$		-		ns				
t _f	$R_{Gon} = R_{Goff} = 20 \Omega$		-		ns				
E _{on}	inductive load		0,75		mJ				
E_{off}			1,35		mJ				
Diode - In	verter, Chopper								
$V_F = V_{EC}$	I _F = 30 A, T _i = 25 (125) °C		1,4	1,6	V				
V _(TO)	$T_j = 25 (125) ^{\circ}C$		0,95	1	V				
r _T	T _j = 25 (125) °C		15	20	mΩ				
$R_{th(j-s)}$	per diode		1,5		K/W				
I _{RRM}	under following conditions		-		Α				
Q_{rr}	$I_F = 30 \text{ A}, V_R = 300 \text{ V}$		-		μC				
E _{rr}	V _{GE} = 0 V, T _j = 125 °C				mJ				
	$di_F/dt = -A/\mu s$								
Diode - Rectifier									
V_{F}	I _F = 25 A, T _i = 25 °C		1,1		V				
V _(TO)	T _j = 150 °C		0,8		V				
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ				
$R_{th(j-s)}$	per diode		1,25		K/W				
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanic	al Data	·							
w			65		g				
M_s	Mounting torque	2		2,5	Nm				

SKiiP 25NAB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.