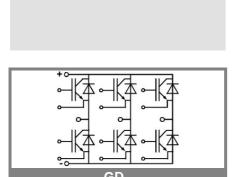
SKIM 150GD128D

SKiM 4

SPT IGBT Module

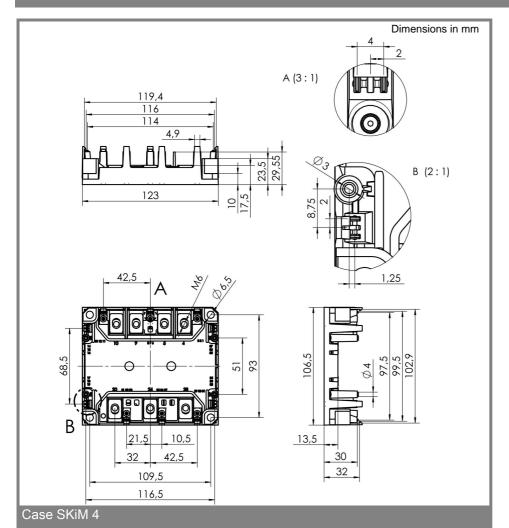
SKiM 150GD128D

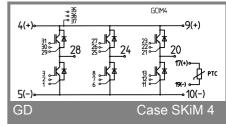

Target Data

Features

- N channel, homogeneous planar IGBT Silicon structure with n+ buffer layer in SPT (soft punch through) technology
- · Low inductance case
- Fast & soft inverse CAL diodes
- Isolated by Al2O3 DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- Spring contyact system to attach driver PCB to the control
- Integrated temperature sensor

Typical Applications


- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Switching (not for linear use)



Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT			•					
V_{CES}		1200	V					
I _C	T _s = 25 (80) °C	110 (80)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	200	Α					
V_{GES}	·	± 20	V					
$T_j (T_{stg})$		-40 150 (125)	°C					
T _{cop}	max. case operating temperature	125	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _s = 25 (80) °C	110 (70)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	200	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	Α					

Characte	Characteristics T _{case} = 25°C, unless otherwise specifi						
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0$; $V_{CE} = V_{CES}$; $T_i = 25 (125) °C$		0,1	0,3	mA		
V_{CEO}	T _j = 25 (125) °C		1 (0,9)	1,15 (1,05)	V		
r_{CE}	T _j = 25 (125) °C		9 (12)	12 (15)	mΩ		
V_{CEsat}	$I_{Cnom} = 100 \text{ A}; V_{GE} = 15 \text{ V},$		1,9 (2,1)	2,35 (2,55)	V		
	$T_j = 25 (125)$ °C on chip level						
C _{ies}	$V_{GE} = 0$; $V_{CE} = 25 V$; $f = 1 MHz$		9		nF		
C _{oes}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		1		nF		
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1		nF		
L _{CE}				15	nH		
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		mΩ		
t _{d(on)}	$V_{CC} = 600 \text{ V}$				ns		
t _r	I _{Cnom} = 100 A				ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = \Omega$				ns		
t _f	T _j = 125 °C		44.5 (0.5)		ns		
E _{on} (E _{off})	V _{GE} ± 15 V		11,5 (9,5)		mJ		
$E_{on} (E_{off})$	with SKHI 64; T_j = 125 °C				mJ		
	V _{CC} = 600 V; I _C = 100 A						
Inverse o							
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V		
V_{TO}	T _j = 25 (125) °C		1,1	1,45 (1,25)	V		
r_T	T _j = 25 (125) °C		9	13 (11)	mΩ		
I _{RRM}	$I_F = 100 \text{ A}; T_j = 125 \text{ °C}$				A		
Q _{rr}	V _{GE} = 0 V di/dt = A/μs				μC		
E _{rr}	$R_{Gon} = R_{Goff} = \Omega$				mJ		
	characteristics				1		
$R_{th(j-s)}$	per IGBT			0,4	K/W		
$R_{th(j-s)}$	per FWD			0,5	K/W		
•	ture Sensor						
R_{TS}	T = 25 (100) °C		1 (6,7)		kΩ		
tolerance	T = 25 (100) °C		3 (2)		%		
Mechani	cal data						
M ₁	to heatsink (M5)	2		3	Nm		
M_2	for terminals (M6)	4		5	Nm		
W				310	g		

SKiM 150GD128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.