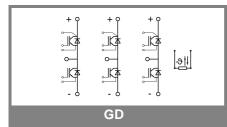
SKiM 270GD128D

SKiM[®] 4

SPT IGBT Modules

SKiM 270GD128D

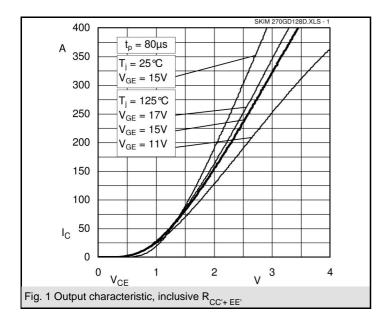

Target Data

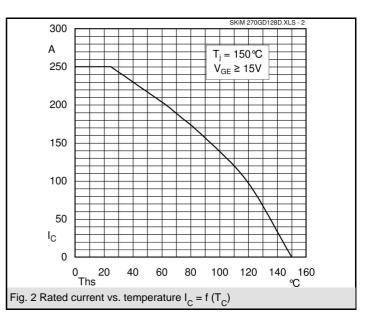
Features

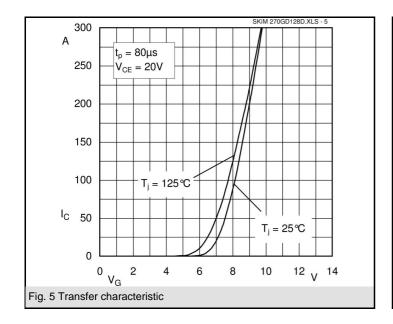
- N channel, homogenous planar IGBT with n+ buffer layer in SPT (soft punch through) technology
- Isolated by Al₂O₃ DCB (direct copper bonded) ceramic substrate plate
- Pressure contact technology for thermal contacts
- Spring contact system to attach driver PCB to the auxiliary terminals
- Integrated temperature sensor

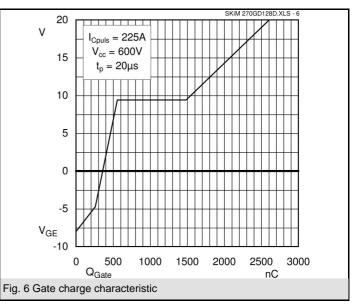
Typical Applications

- Switched mode power supplies
- Three phase inverter for AC motor drives

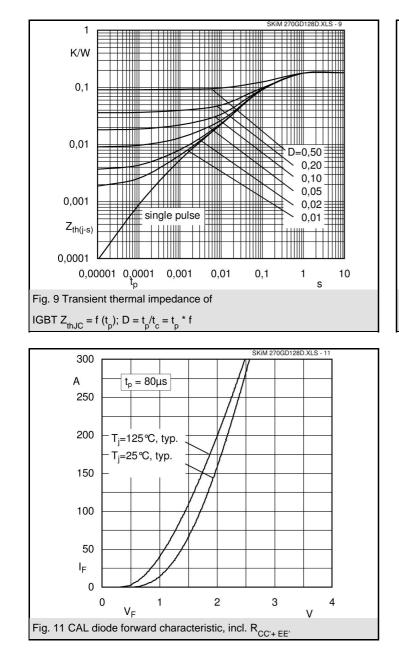


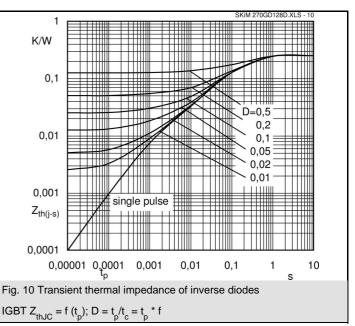

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT					
V _{CES}		1200	V		
I _C	T _s = 25 (70) °C	250 (190)	А		
I _{CM}	T _s = 25 (70) °C, t _p = 1 ms	500 (380)	А		
V _{GES}		± 20	V		
T _j (T _{stg})		-40+150 (125)	°C		
T _{cop}	max. case operating temperature	125	°C		
V _{isol}	AC, 1 min.	2500	V		
Inverse o	liode				
I _F	T _s = 25 (70) °C	220 (150)	А		
I _{FM} = - I _{CM}	T _s = 25 (70) °C, t _p = 1 ms	500 (380)	А		
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C		А		

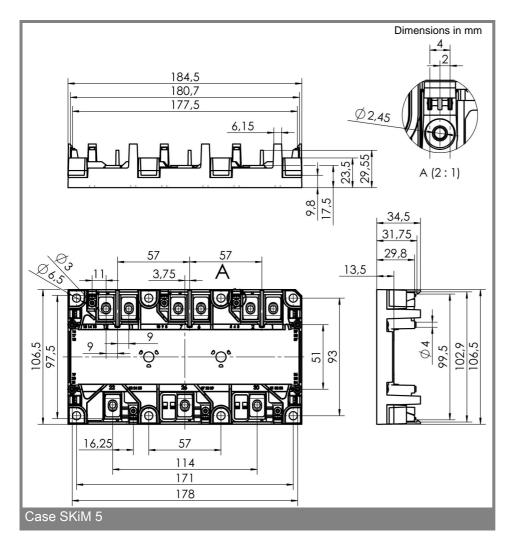

Characteristics T _{case} = 25°C, unless otherwise specifi						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$; I _C = 12 mA	4,45	5,5	6,55	V	
I _{CES}	$V_{GE} = 15; V_{CE} = V_{CES};$ T _j = 25 °C		0,2	0,6	mA	
V _{CEO}	T _i = 25 °C		1 (0,9)	1,15 (1,05)	V	
r _{CE}	T _i = 25 () °C		4 (5,3)	5,3 (6,7)	mΩ	
V _{CEsat}	I _C = 225 A; V _{GE} = 15 V,		1,9 (2,1)	2,35 (2,55)	V	
	T _i = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		18,6		nF	
C _{oes}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		2,2		nF	
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		2,1		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	resistance, terminal-chip T_c = 25 (125) °C		0,9 (1,1)		mΩ	
t _{d(on)}	V _{CC} = 600 V		160		ns	
t, Ś	I _C = 225 A		60		ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = 4,4 \Omega$		660		ns	
t _f	T _j = 125 °C		80		ns	
E _{on} (E _{off})	V _{GE} ± 15 V		20,9 (24,1)		mJ	
$E_{on}\left(E_{off}\right)$	with SKHI 65; T _j = 125 °C				mJ	
	V _{CC} = 600 V; I _C = 225 A					
Inverse d	iode					
$V_F = V_{EC}$	I _F = 225 A; V _{GE} = 0 V; T _i = 25 (125) °C				V	
V _{TO}	T _i = 25 (125) °C				V	
r _T	T _i = 25 (125) °C				mΩ	
I _{RRM}	I _F = 225 A; T _j = 125 °C				А	
Q _{rr}	V _{GE} = 0 V di/dt = A/µs				μC	
E _{rr}	$R_{Gon} = R_{Goff} = 4,4 \ \Omega$		14,5		mJ	
Thermal of	characteristics					
R _{th(j-s)}	per IGBT			0,18	K/W	
R _{th(j-s)}	per FWD			0,25	K/W	
	ture Sensor					
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ	
tolerance	T = 25 (100) °C		3 (2)		%	
Mechanic	cal data					
M ₁	to heatsink (M5)				Nm	
M ₂	for terminals (M6)	4		5	Nm	
w				460	1	

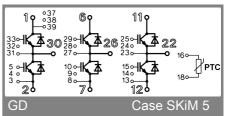

1

SKiM 270GD128D








28-04-2005 RAA

SKiM 270GD128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.