SKKQ 45

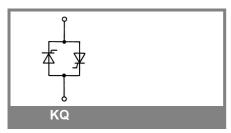
SEMIPACK[®] 0

Antiparallel Thyristor Module

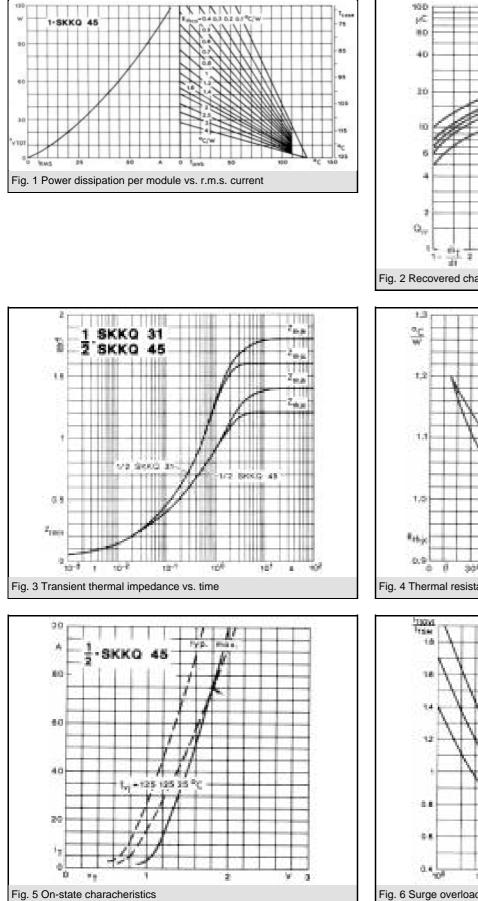
SKKQ 31

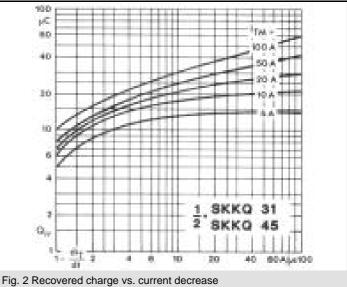
Preliminary Data

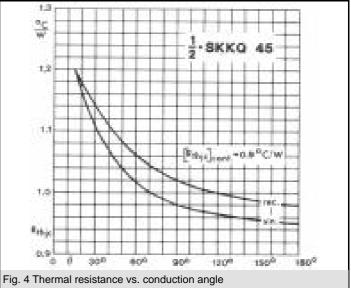
Features

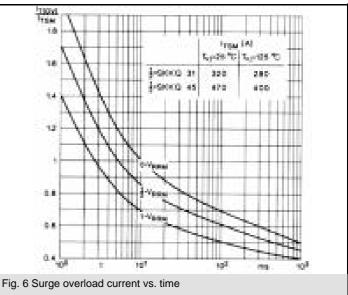

- Compact Design
- Heat transfer through aluminium oxide ceramic isolated metal baseplat
- UL recognized, file no. E 63 532

Typical Applications*

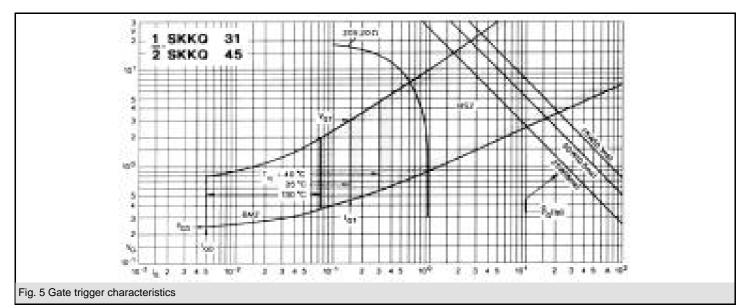

- AC motor starters
- Light control (studios, theaters...)
- Temperature control

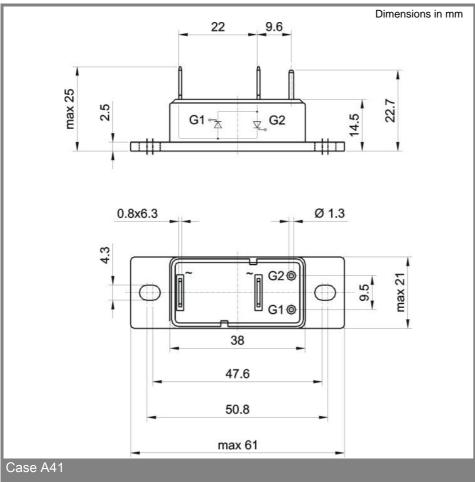

V _{RSM}	V _{RRM} , V _{DRM}	I_{RMS} = 24 A ¹ ; 45 A ²) A (full conduction)
V	V	(T _s = 85 °C)
700	600	SKKQ 45/06 E
900	800	SKKQ 45/08 E
1300	1200	SKKQ 45/12 E
1500	1400	SKKQ 45/14 E
1700	1600	SKKQ 45/16 E


Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; Tcase = 85°C ⁽²⁾	45	А
	; sin. 180° ;		A
I _{t RMS}	W1C, sin. 180°, Tcase=85°C	32	А
I _{TSM}	T _{vj} = 25 °C ; 10 ms	470	А
	T _{vj} = 125 °C ; 10 ms	400	А
i²t	T _{vj} = 25 °C ; 8,310 ms	1100	A²s
	T _{vj} = 125 °C ; 8,310 ms	800	A²s
V _T	T _{vi} = 25 °C, I _T = 75 A	max. 1,8	V
V _{T(TO)}	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 12	mΩ
I _{DD} ;I _{RD}	$T_{vj} = 25 \text{ °C}, V_{RD} = V_{RRM}$		mA
	T_{vj} = 125 °C, V_{RD} = V_{RRM}	max. 10	mA
t _{gd}	T _{vj} = 25 °C, I _G = 1 A; di _G /dt= 1 A/μs	1	μs
t _{gr}	$V_{\rm D} = 0.67 \ ^{*}V_{\rm DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 5060 Hz	100	A/µs
t _q	T _{vi} = 125 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	100 / 200	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	250 / 400	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vj} = 25 °C; d.c.	min. 150	mA
V_{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-s)}	cont. per thyristor	1,2	K/W
0 /	sin 180° per thyristor	1,3	K/W
R _{th(j-s)}	cont. per W1C	0,6	K/W
	sin 180° per W1C	0,6	K/W
Τ _{vj}		-40 +125	°C
T _{stg}		-40 +125	°C
	terminals, 10s		°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	Mounting torque to heatsink	1,5	Nm
M _t			Nm
а			m/s²
m		50	g
Case	SEMIPACK [®] 0	A 41	



SKKQ 45





© by SEMIKRON

SKKQ 45

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.