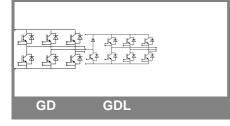


SEMITRANS[®] 6

IGBT modules

SKM 40GD123D SKM 40GDL123D

Features


- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (9 mm) and creepage distances (13 mm)

Typical Applications

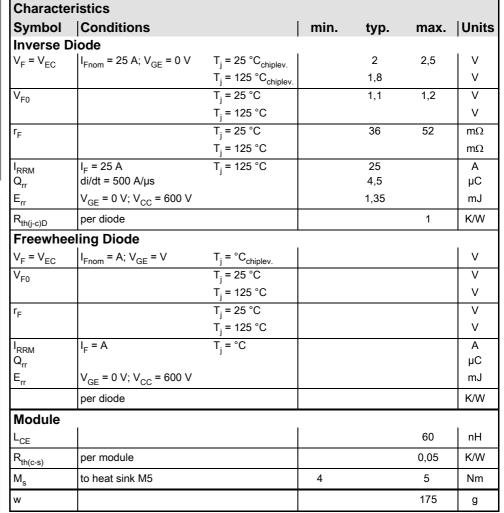
- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz

Absolute	e Maximum Ratings	$T_c = 2$	25 °C, unless otherwise	e specified
Symbol	Conditions		Values	Units
IGBT	_			
V _{CES}	T _j = 25 °C		1200	V
Ι _C	T _j = 150 °C	T _{case} = 25 °C	40	А
		T _{case} = 80 °C	30	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		50	А
V _{GES}			± 20	V
t _{psc}	V _{CC} = 600 V; V _{GE} ≤ 20 V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse	Diode			•
I _F	T _j = 150 °C	T _{case} = 25 °C	45	А
		T _{case} = 80 °C	30	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		50	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	350	А
Module		<u>.</u>		<u>.</u>
I _{t(RMS)}			100	А
Τ _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _c = 25 °C, unless otherwise specif					pecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,3	0,9	mA
V _{CE0}		T _i = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _i = 25°C		44	56	mΩ
		T _j = 125°C		60	76	mΩ
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	$T_j = °C_{chiplev.}$		2,5	3	V
C _{ies}				1,6	2,1	nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,25	0,3	nF
C _{res}				0,11	0,15	nF
t _{d(on)}				70		ns
t _r	R _{Gon} = 40 Ω	V _{CC} = 600V		55		ns
Eon		I _C = 25A		3,8		mJ
t _{d(off)}	R _{Goff} = 40 Ω	T _i = 125 °C		400		ns
t _f		V _{GE} = -15V		40		ns
E _{off}				2,3		mJ
R _{th(j-c)}	per IGBT	•			0,56	K/W

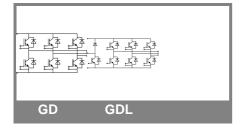
SEMITRANS[®] 6

IGBT modules


SKM 40GD123D SKM 40GDL123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (9 mm) and creepage distances (13 mm)


Typical Applications

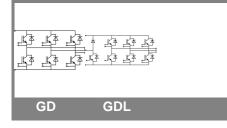
- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

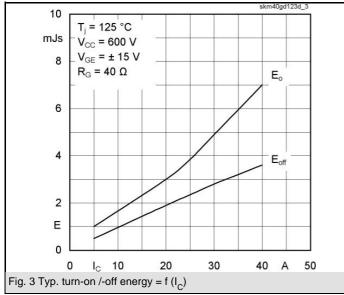
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

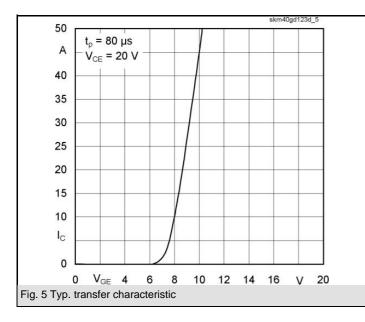
IGBT	modu	lles
------	------	------

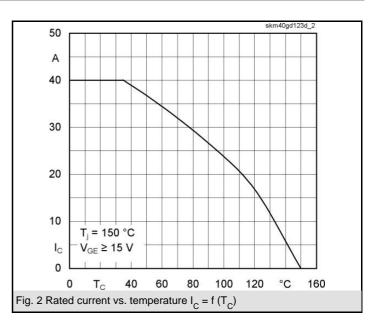
SKM 40GD123D SKM 40GDL123D

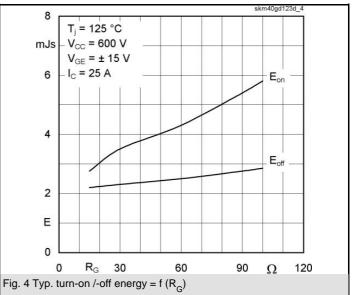

Z _{th}			
Symbol	Conditions	Values	Units
Z Ri Ri			
R _i	i = 1	260	mk/W
R _i	i = 2	250	mk/W
R _i	i = 3	38	mk/W
R _i	i = 4	12	mk/W
tau	i = 1	0,0447	s
tau	i = 2	0,0079	s
tau _i	i = 3	0,0015	s
tau _i	i = 4	0,0002	s
Z _{Ri} th(j-c)D			ľ
R _i	i = 1	580	mk/W
R _i	i = 2	330	mk/W
R _i	i = 3	73	mk/W
R _i	i = 4	17	mk/W
tau _i	i = 1	0,054	s
tau	i = 2	0,0089	s
tau _i	i = 3	0,0018	s
tau _i	i = 4	0,0002	s

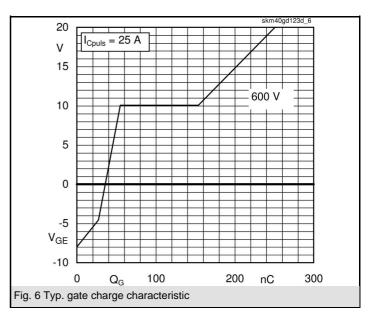
Features

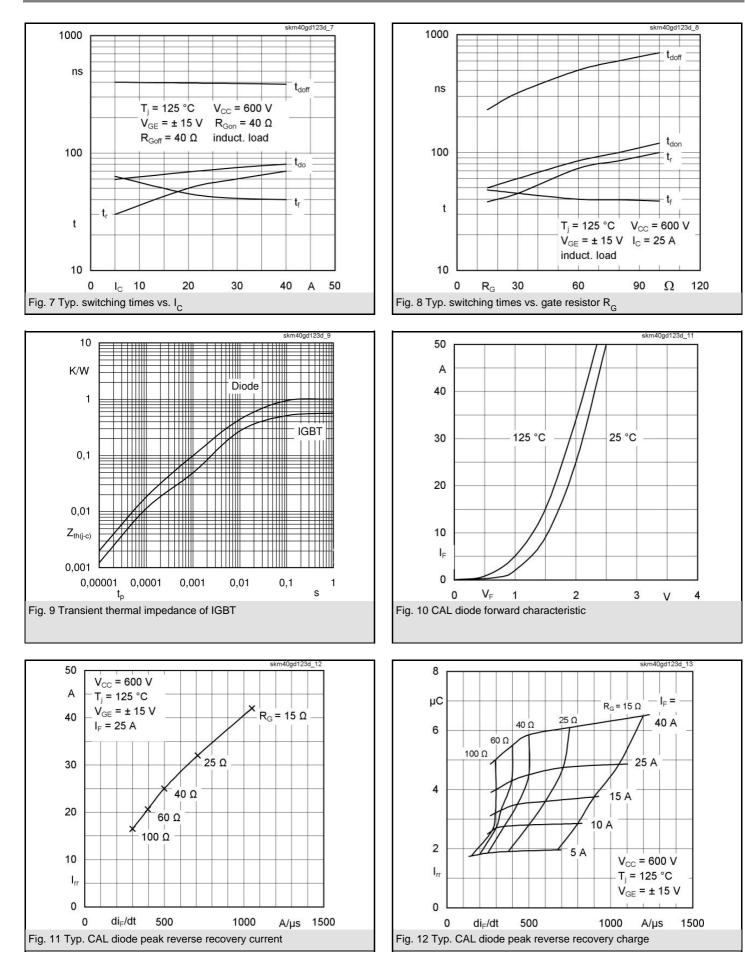

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (9 mm) and creepage distances (13 mm)

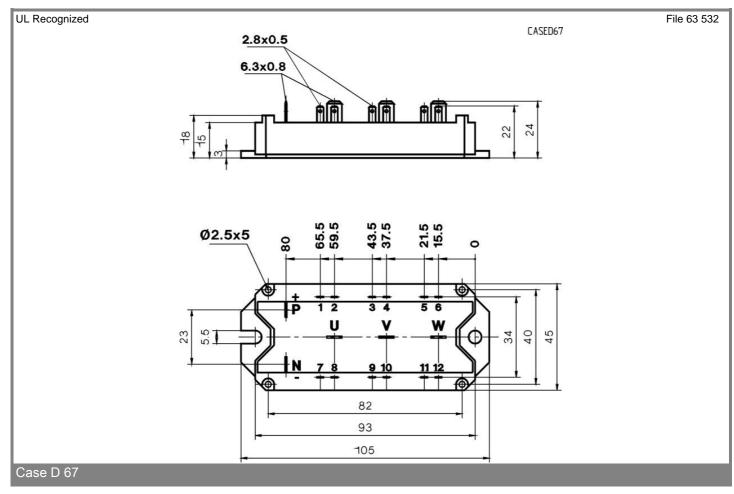

Typical Applications

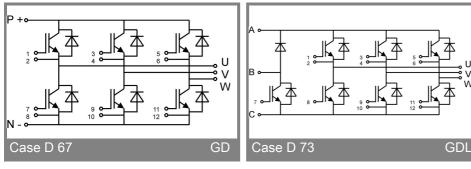

- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz











5

