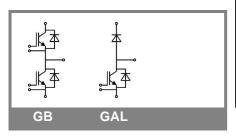
SKM 50GB123D ...

SEMITRANS[®] 2

IGBT Modules


SKM 50GB123D SKM 50GAL123D

Features

- MOS input (voltage controlled)
- Low inductance case
- Low tail current with low temperature dependence
- · High short circuit capability, self limiting to 6xI_{CNOM}
 • Fast and soft CAL diodes
- · Isolated copper base plate using DCB (Direct Copper Bonding Technology)

Typical Applications

- AC inverter drives
- Power supplies

Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	•					
V_{CES}	$T_j = 25 °C$ $T_i = 150 °C$		1200	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	50	Α		
		T _{case} = 80 °C	40	Α		
I_{CRM}	I _{CRM} =2xI _{Cnom}		100	Α		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs		
Inverse I	Diode					
I _F	T _j = 150 °C	$T_{case} = 25 ^{\circ}C$	50	Α		
		T _{case} = 80 °C	40	Α		
I_{FRM}	$I_{FRM} = 2xI_{Fnom}$		100	Α		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	550	Α		
Freewhe	eling Diode					
I_{F}	T _j = 150 °C	T_{case} = 25 °C	50	Α		
		T_{case} = 80 °C	40	Α		
I _{FRM}	IFRM = 2xIFnom		100	А		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	550	Α		
Module						
$I_{t(RMS)}$			200	Α		
T _{vj}			- 40+150	°C		
T _{stg}			125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30	37	mΩ
		T _j = 125°C		44	53	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				3,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF
C _{res}				0,2		nF
Q_G	$V_{GE} = -8V - +20V$			500		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				70		ns
t _r	$R_{Gon} = 27 \Omega$	V _{CC} = 600V		60		ns
E _{on}		I _{Cnom} = 40A		7		mJ
$t_{d(off)}$	$R_{Goff} = 27 \Omega$	T _j = 125 °C		400		ns
t_f				45		ns
E_{off}				4,5		mJ
R _{th(j-c)}	per IGBT				0,4	K/W

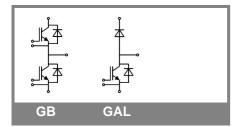
SKM 50GB123D ...

IGBT Modules

SKM 50GB123D SKM 50GAL123D

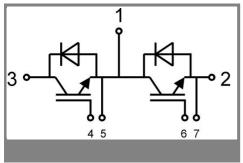
Features

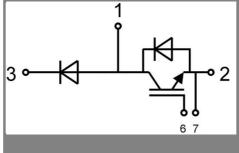
- MOS input (voltage controlled)
- Low inductance case
- Low tail current with low temperature dependence
- High short circuit capability, self limiting to 6xI_{CNOM}
 Fast and soft CAL diodes
- Isolated copper base plate using DCB (Direct Copper Bonding Technology)


Typical Applications

- AC inverter drives
- Power supplies


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V			
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V			
V_{F0}		T _j = 25 °C		1,1	1,2	V			
		T _j = 125 °C				V			
r _F		T _j = 25 °C		18	26	mΩ			
		T _j = 125 °C T _j = 125 °C			22	mΩ			
I _{RRM}	I _{Fnom} = 40 A	T _j = 125 °C		35		Α			
Q _{rr}	di/dt = 800 A/μs			7		μC			
E _{rr}	V _{cc} = 600V			2		mJ			
R _{th(j-c)}	per diode				0,7	K/W			
	Freewheeling Diode								
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$,		2	2,5	V			
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V			
V_{F0}		T _j = 25 °C		1,1	1,2	V			
		T _j = 125 °C				V			
r _F		T _j = 25 °C		18	26	V			
		T _j = 125 °C				V			
I _{RRM}	I _{Fnom} = 40 A	T _j = 125 °C		35		A			
Q _{rr}	di/dt = 800 A/µs			7		μC			
E _{rr}	V _{cc} = 600V			2		mJ			
R _{th(j-c)}	per diode				0,7	K/W			
Module									
L _{CE}					30	nΗ			
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ			
		T _{case} = 125 °C		1		mΩ			
R _{th(c-s)}	per module				0,05	K/W			
M _s	to heat sink M6		3		5	Nm			
M _t	to terminals M5		2,5		5	Nm			
w					160	g			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKM 50GB123D ...

5 23-11-2006 RAA © by SEMIKRON