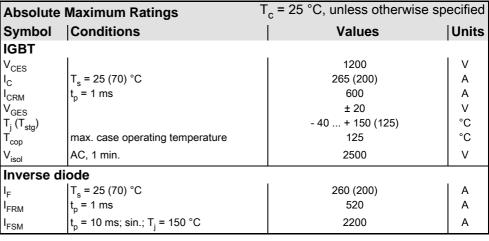
SKiM 300GD126D

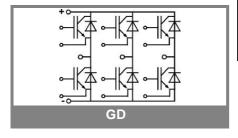
SKiM[®] 4

IGBT Modules

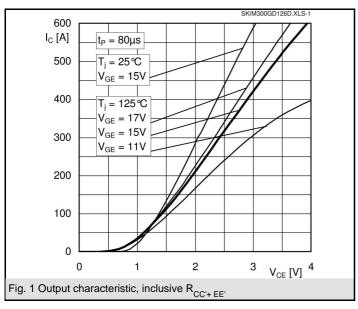
SKIM 300GD126D

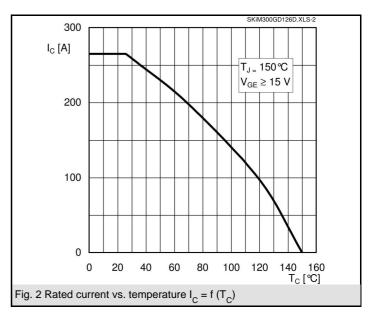

Preliminary Data

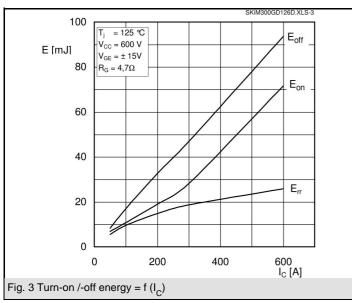
Features

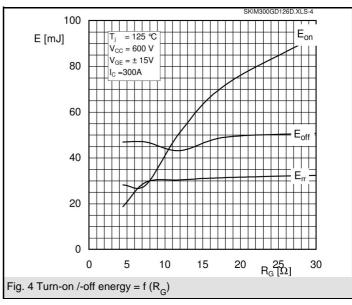

- Trench gate IGBT with field stop layer
- Low inductance case
- . Fast & soft inverse CAL diode
- Isolated by Al₂O₃ DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- Spring contact system to attach driver PCB to the control terminals
- Integrated temperature sensor

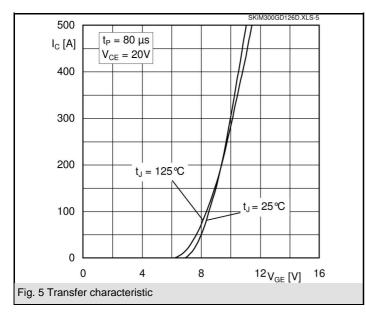
Typical Applications*

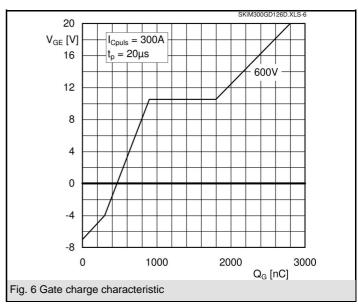

- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

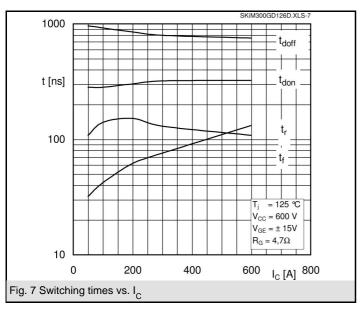


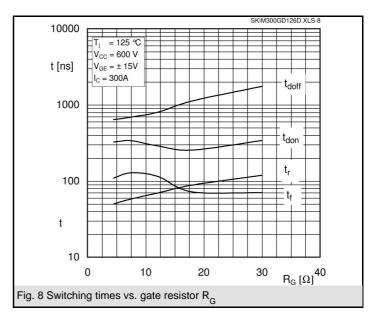

Characte	ristics	_c = 25 °C,	= 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 12 \text{ mA}$	4,95	5,8	6,55	V	
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$		0,2	0,6	mA	
V_{CEO}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V	
r_{CE}	T _j = 25 (125) °C		2,3 (3,4)	3,2 (4,5)	mΩ	
V_{CEsat}	I _{Cnom} = 300 A; V _{GE} = 15 V,		1,7 (2)	2,15 (2,45)	V	
	T _i = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		23		nF	
C _{oes}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		1,6		nF	
C _{res}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		1,6		nF	
L _{CE}				15	nΗ	
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		$m\Omega$	
t _{d(on)}	V _{CC} = 600 V		320		ns	
t_r	I _{Cnom} = 300 A		75		ns	
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 4.7 \Omega$		800		ns	
t _f	T _j = 125 °C		130		ns	
$E_{on}\left(E_{off}\right)$	V _{GE} ± 15 V		28 (47)		mJ	
$E_{on} (E_{off})$	with SKHI 64; T _j = 125 °C				mJ	
	V _{CC} = 600 V; I _C = 300 A					
Inverse diode						
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,55 (2,3)	V	
V_{TO}	T _i = 25 (125) °C		1,1	1,45 (1,25)	V	
r_T	T _j = 25 (125) °C		4,5	5,3 (5,3)	mΩ	
I_{RRM}	I _F = 300 A; T _j = 125 °C				Α	
Q_{rr}	V _{GE} = 0 V di/dt = A/µs				μC	
E _{rr}	R_{Gon} = R_{Goff} = 4,7 Ω				mJ	
Thermal characteristics						
$R_{th(j-s)}$	per IGBT			0,2	K/W	
$R_{th(j-s)}$	per FWD			0,285	K/W	
Temperature Sensor						
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ	
tolerance	T = 25 (100) °C		3 (2)		%	
Mechanic	cal data					
M ₁	to heatsink (M5)	2		3	Nm	
M_2	for terminals (M6)	4		5	Nm	
w				310	g	

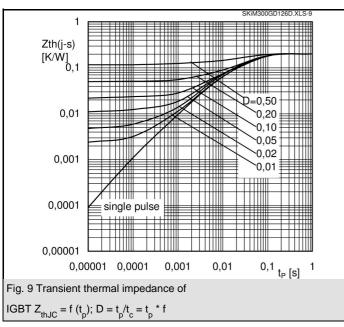


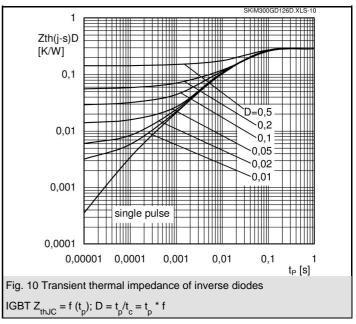

SKiM 300GD126D

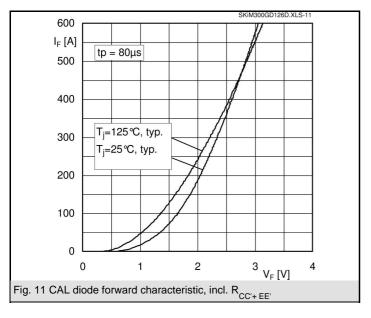


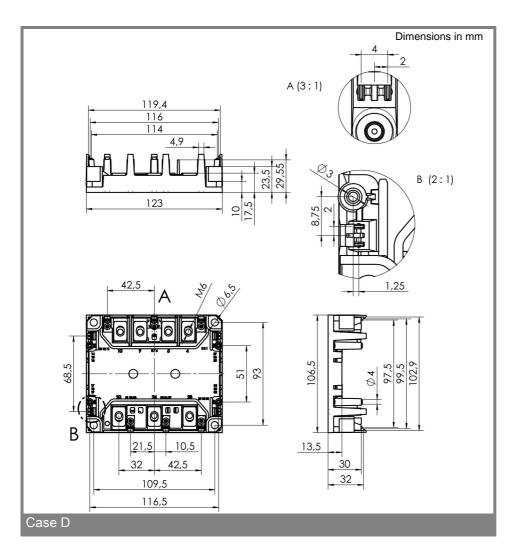


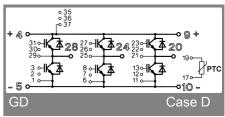







SKIM 300GD126D





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.