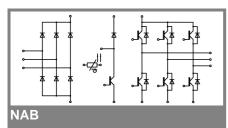
SKiiP 14NAB066V1

MiniSKiiP[®] 1

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 14NAB066V1

Target Data

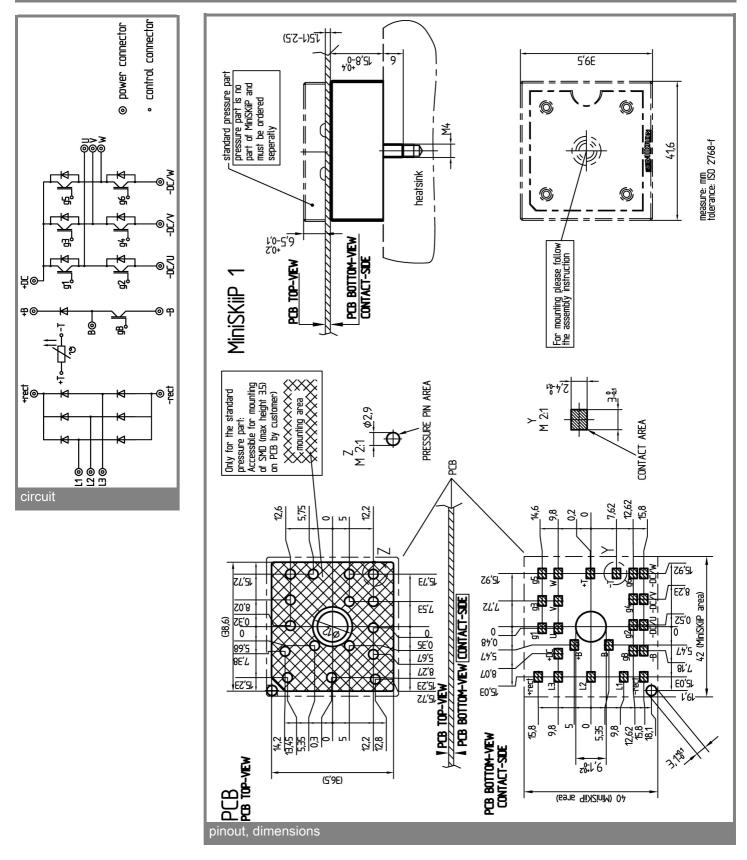
Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

- Inverter up to 6,3 kVATypical motor power 4,0 kW

Remarks


• Case temperature limited to T_C = 125 °C max.

Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V _{CES}		600	V				
Ι _C	T _s = 25 (70) °C		А				
I _{CRM}	$T_s = 25 (70) \text{ °C}, t_p \le 1 \text{ ms}$		A				
V _{GES}		± 20	V				
Т _ј		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C		A				
I _{FRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$		А				
Т _ј		- 40 + 175	°C				
Diode - Rectifier							
V _{RRM}		800	V				
I _F	T _s = 70 °C	46	А				
I _{FSM}	t _p = 10 ms, sin 180 °, T _j = 25 °C	370	А				
i²t	t _p = 10 ms, sin 180 °, T _j = 25 °C	680	A²s				
Т _ј		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	A				
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characte	ristics	T _s = 25 °C	T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CEsat}	I _C = 20 A, T _i = 25 (125) °C		1,45 (1,65)	1,9 (2,05)	V				
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,5 \text{ mA}$		5,8		V				
V _{CE(TO)}	T _j = 25 (125) °C		0,9 (0,85)	1 (0,9)	V				
r _T	T _j = 25 (125) °C		28 (40)	45 (58)	mΩ				
Cies	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		-		nF				
C _{oes}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		-		nF				
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		-		nF				
R _{th(j-s)}	per IGBT		1,25		K/W				
t _{d(on)}	under following conditions		-		ns				
tr	V _{CC} = 300 V, V _{GE} = ± 15 V		-		ns				
t _{d(off)}	I _C = 20 A, T _j = 125 °C		-		ns				
t _f	$R_{Gon} = R_{Goff} = -\Omega$		-		ns				
Eon	inductive load		0,5		mJ				
E _{off}			0,9		mJ				
Diode - Ir	nverter, Chopper	•			•				
$V_F = V_{EC}$	I _F = 20 A, T _i = 25 (125) °C		1,4	1,6	V				
V _(TO)	T _i = 25 (125) °C		0,95	1	V				
r _T	T _i = 25 (125) °C		23	30	mΩ				
R _{th(j-s)}	per diode		2,2		K/W				
I _{RRM}	under following conditions		-		А				
Q _{rr}	I _F = 20 A, V _B = 300 V		-		μC				
Err	V _{GE} = 0 V, T _i = 125 °C				mJ				
	$di_{F}/dt = - A/\mu s$								
Diode - R	Rectifier								
V _F	I _F = 25 A, T _i = 25 °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	T _i = 150 °C		13		mΩ				
R _{th(j-s)}	per diode		1,25		K/W				
	ture Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanie		I	. ,		1				
w			35		g				
	Mounting torque	2		2,5	Nm				
M _s	Mounting torque	2		2,5					

SKiiP 14NAB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.