

# MOS FIELD EFFECT TRANSISTOR 2SK2415, 2SK2415-Z

# SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

# DESCRIPTION

NEC

The 2SK2415 is N-Channel MOS Field Effect Transistor designed for high voltage switching applications.

#### **FEATURES**

Low On-Resistance

 $\begin{aligned} &\mathsf{R}_{\mathsf{DS}(\mathsf{on})1} = 0.10 \ \Omega \ \mathsf{MAX}. \ (@ \ \mathsf{VGS} = 10 \ \mathsf{V}, \ \mathsf{ID} = 4.0 \ \mathsf{A}) \\ &\mathsf{R}_{\mathsf{DS}(\mathsf{on})2} = 0.15 \ \Omega \ \mathsf{MAX}. \ (@ \ \mathsf{VGS} = 4 \ \mathsf{V}, \ \mathsf{ID} = 4.0 \ \mathsf{A}) \end{aligned}$ 

• Low Ciss Ciss = 570 pF TYP.

### QUALITY GRADE

#### Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

#### ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = 25 $^{\circ}$ C)

| Drain to Source Voltage                          | Vdss     | 60          | V  |
|--------------------------------------------------|----------|-------------|----|
| Gate to Source Voltage                           | Vgss     | ±20         | V  |
| Drain Current (DC)                               | D(DC)    | ±8.0        | А  |
| Drain Current (pulse)*                           | D(pulse) | ±32         | А  |
| Total Power Dissipation (Tc = 25 °C)             | PT1      | 20          | W  |
| Total Power Dissipation (T <sub>a</sub> = 25 °C) | Pt2      | 1.0         | W  |
| Channel Temperature                              | Tch      | 150         | °C |
| Storage Temperature                              | Tstg     | -55 to +150 | °C |
| Single Avalanche Current**                       | las      | 8.0         | А  |
| Single Avalanche Energy**                        | Eas      | 6.4         | mJ |

\* PW  $\leq$  10  $\mu$ s, Duty Cycle  $\leq$  1 %

\*\* Starting T<sub>ch</sub> = 25 °C, R<sub>G</sub> = 25  $\Omega$ , V<sub>GS</sub> = 20 V  $\rightarrow$  0



The information in this document is subject to change without notice.

# ELECTRICAL CHARACTERISTICS (TA = 25 °C)

| CHARACTERISTIC                      | SYMBOL          | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS                                 |
|-------------------------------------|-----------------|------|------|------|------|-------------------------------------------------|
| Drain to Source On-State Resistance | RDS(on)1        |      | 0.07 | 0.10 | Ω    | Vgs = 10 V, Id = 4.0 A                          |
| Drain to Source On-State Resistance | RDS(on)2        |      | 0.10 | 0.15 | Ω    | Vgs = 4 V, Id = 4.0 A                           |
| Gate to Source Cutoff Voltage       | VGS(off)        | 1.0  | 1.6  | 2.0  | V    | $V_{DS} = 10 V, I_{D} = 1 mA$                   |
| Forward Transfer Admittance         | y <sub>fs</sub> | 5.0  | 8.4  |      | S    | VDS = 10 V, ID = 4.0 A                          |
| Drain Leakage Current               | Idss            |      |      | 10   | μΑ   | $V_{DS} = 60 V, V_{GS} = 0$                     |
| Gate to Source Leakage Current      | lgss            |      |      | ±10  | μΑ   | $V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0$ |
| Input Capacitance                   | Ciss            |      | 570  |      | pF   | VDS = 10 V                                      |
| Output Capacitance                  | Coss            |      | 290  |      | pF   | V <sub>GS</sub> = 0                             |
| Reverse Transfer Capacitance        | Crss            |      | 75   |      | pF   | f = 1 MHz                                       |
| Turn-On Delay Time                  | td(on)          |      | 5    |      | ns   | ID = 4.0 A                                      |
| Rise Time                           | tr              |      | 60   |      | ns   | $V_{GS(on)} = 10 V$                             |
| Turn-Off Delay Time                 | td(off)         |      | 75   |      | ns   | Vdd = 30 V                                      |
| Fall Time                           | tr              |      | 40   |      | ns   | R <sub>G</sub> = 10 Ω                           |
| Total Gate Charge                   | QG              |      | 21   |      | nC   | ID = 8.0 A                                      |
| Gate to Source Charge               | QGS             |      | 2.0  |      | nC   | VDD = 48 V                                      |
| Gate to Drain Charge                | Qgd             |      | 6.5  |      | nC   | Vgs = 10 V                                      |
| Body Diode Forward Voltage          | VF(S-D)         |      | 1.0  |      | V    | IF = 8.0 A, VGS = 0                             |
| Reverse Recovery Time               | trr             |      | 85   |      | ns   | IF = 8.0 A, VGS = 0                             |
| Reverse Recovery Charge             | Qrr             |      | 200  |      | nC   | di/dt = 100 A/µs                                |

#### Test Circuit 1 Avalanche Capability

#### Test Circuit 2 Switching Time







# Test Circuit 3 Gate Charge



The application circuits and their parameters are for references only and are not intended for use in actual design-in's.