FAIRCHILD

SEMICONDUCTOR®

FSAM10SH60A

SPM[™] (Smart Power Module)

General Description

FSAM10SH60A is an advanced smart power module (SPM) that Fairchild has newly developed and designed to provide very compact and high performance ac motor drives mainly targeting high speed low-power inverterdriven application like washing machines. It combines optimized circuit protection and drive matched to low-loss IGBTs. Highly effective short-circuit current detection/ protection is realized through the use of advanced current sensing IGBT chips that allow continuous monitoring of the IGBTs current. System reliability is further enhanced by the built-in over-temperature monitoring and integrated undervoltage lock-out protection. The high speed built-in HVIC provides opto-coupler-less IGBT gate driving capability that further reduce the overall size of the inverter system design. In addition the incorporated HVIC facilitates the use of single-supply drive topology enabling the FSAM10SH60A to be driven by only one drive supply voltage without negative bias. Inverter current sensing application can be achieved due to the divided nagative dc terminals.

Features

- UL Certified No. E209204
- 600V-10A 3-phase IGBT inverter bridge including control ICs for gate driving and protection
- Divided negative dc-link terminals for inverter current sensing applications
- · Single-grounded power supply due to built-in HVIC
- Typical switching frequency of 15kHz
- · Built-in thermistor for over-temperature monitoring
- Inverter power rating of 0.5kW / 100~253 Vac
- Isolation rating of 2500Vrms/min.
- Very low leakage current due to using ceramic substrate
- Adjustable current protection level by varying series resistor value with sense-IGBTs

Applications

- AC 100V ~ 253V 3-phase inverter drive for small power (0.5kW) ac motor drives
- Home appliances applications requiring high switching frequency operation like washing machines drive system
- Application ratings:
- Power : 0.5 kW / 100~253 Vac
- Switching frequency : Typical 15kHz (PWM Control)
- 100% load current : 3.3A (Irms)
- 150% load current : 5.0A (Irms) for 1 minute

©2003 Fairchild Semiconductor Corporation

©2003 Fairchild Semiconductor Corporation

Pin Descr	iptions	
Pin Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM _(L)	Low-side Common Supply Ground
3	IN _(UL)	Signal Input for Low-side U Phase
4	IN _(VL)	Signal Input for Low-side V Phase
5	IN _(WL)	Signal Input for Low-side W Phase
6	COM _(L)	Low-side Common Supply Ground
7	V _{FO}	Fault Output
8	C _{FOD}	Capacitor for Fault Output Duration Time Selection
9	C _{SC}	Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input
10	R _{SC}	Resistor for Short-Circuit Current Detection
11	IN _(UH)	Signal Input for High-side U Phase
12	V _{CC(UH)}	High-side Bias Voltage for U Phase IC
13	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
14	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
15	IN _(VH)	Signal Input for High-side V Phase
16	COM _(H)	High-side Common Supply Ground
17	V _{CC(VH)}	High-side Bias Voltage for V Phase IC
18	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
19	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
20	IN _(WH)	Signal Input for High-side W Phase
21	V _{CC(WH)}	High-side Bias Voltage for W Phase IC
22	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
23	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
24	V _{TH}	Thermistor Bias Voltage
25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
26	NU	Negative DC–Link Input for U Phase
27	N _V	Negative DC–Link Input for V Phase
28	N _W	Negative DC–Link Input for W Phase
29	U	Output for U Phase
30	V	Output for V Phase
31	W	Output for W Phase
32	P	Positive DC-Link Input

©2003 Fairchild Semiconductor Corporation

Rev. E, August 2003

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified) **Inverter Part**

ltem	Symbol	Condition	Rating	Unit
Supply Voltage	V _{PN}	Applied between P- N_U , N_V , N_W	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P- N_U , N_V , N_W	500	V
Collector-Emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	$T_{\rm C}$ = 25°C	10	А
Each IGBT Collector Current	± I _C	T _C = 100°C	9	А
Each IGBT Collector Current (Peak)	± I _{CP}	T _C = 25°C, Instantaneous Value (Pulse)	20	A
Collector Dissipation	P _C	T _C = 25°C per One Chip	43	W
Operating Junction Temperature	Τ _J	(Note 1)	-20 ~ 125	°C

Note: 1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (@ $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Control Part

Item	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between V _{CC(UH)} , V _{CC(VH)} , V _{CC(WH)} -	20	V
		$COM_{(H)}, V_{CC(L)} - COM_{(L)}$		
High-side Control Bias Voltage	V _{BS}	Applied between	20	V
		$V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, V_{B(W)} - V_{S(W)}$		
Input Signal Voltage	V _{IN}	Applied between IN _(UH) , IN _(VH) , IN _(WH) - COM _(H)	-0.3 ~ V _{CC} +0.3	V
		$IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - $COM_{(L)}$		
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM _(L)	$-0.3 \sim V_{CC} + 0.3$	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM _(L)	-0.3 ~ V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)	V _{PN(PROT)}	$V_{CC} = V_{BS} = 13.5 \sim 16.5V$ T ₁ = 25°C. Non-repetitive, less than 6us	400	V
Module Case Operation Temperature	т _с	Note Fig.2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

Absolute Maximum Ratings Thermal Resistance								
Item	Symbol	Condition	Min.	Тур.	Max.	Unit		
Junction to Case Thermal Resistance	R _{th(j-c)Q}	Each IGBT under Inverter Operating Condition	-	-	2.9	°C/W		
	R _{th(j-c)F}	Each FWDi under Inverter Operating Condition	-	-	3.6	°C/W		
Contact Thermal Resistance	R _{th(c-h)}	Ceramic Substrate (per 1 Module) Thermal Grease Applied (Note 3)	-	-	0.06	°C/W		

 $\begin{array}{l} \textbf{Note:}\\ \textbf{2. For the measurement point of case temperature(T_C), please refer to Fig. 2.\\ \textbf{3. The thickness of thermal grease should not be more than 100um.} \end{array}$

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Inverter Part

Item	Symbol	Conditio	on	Min.	Тур.	Max.	Unit
Collector - Emitter Saturation Voltage	V _{CE(SAT)}	V _{CC} = V _{BS} = 15V, V _{IN} = 0V	I _C = 10A, T _J = 25°C	-	-	2.5	V
FWDi Forward Voltage	V _{FM}	V _{IN} = 5V	I _C = 10A, T _J = 25°C	-	-	2.3	V
Switching Times	t _{ON}	$V_{PN} = 300V, V_{CC} = V_{BS} = 15V$ $I_{C} = 10A, T_{J} = 25^{\circ}C$			0.27	-	us
	t _{C(ON)}				0.12	-	us
	t _{OFF}	$V_{IN} = 5V \leftrightarrow 0V$, Inductive Load (High, Low-side)		-	0.6	-	us
	t _{C(OFF)}			-	0.23	-	us
	t _{rr}	(Note 4)		-	0.13	-	us
Collector - Emitter Leakage Current	ICES	$V_{CE} = V_{CES}, T_{J} = 25^{\circ}C$		-	-	250	μĀ

Note:
t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4.

S
Ň
\leq
\leq
-
0
S
I
9
ö
Ď

Control Part							
Item	Symbol		Min.	Тур.	Max.	Unit	
Quiescent V_{CC} Supply Current	I _{QCCL}	V _{CC} = 15V IN _(UL, VL, WL) = 5V	V _{CC(L)} - COM _(L)	-	-	26	mA
	I _{QCCH}	V _{CC} = 15V IN _(UH, VH, WH) = 5V	V _{CC(UH)} , V _{CC(VH)} , V _{CC(WH)} - COM _(H)	-	-	130	uA
Quiescent V_{BS} Supply Current	I _{QBS}	V _{BS} = 15V IN _(UH, VH, WH) = 5V	$V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, V_{B(W)} - V_{S(W)}$	-	-	420	uA
Fault Output Voltage	V _{FOH}	V _{SC} = 0V, V _{FO} Circui	t: 4.7k Ω to 5V Pull-up	4.5	-	-	V
	V _{FOL}	V_{SC} = 1V, V_{FO} Circuit: 4.7k Ω to 5V Pull-up		-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15V (Note 5)			0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	R_{SC} = 50 Ω , R_{SU} = R_{SV} = R_{SW} = 0 Ω and I_C = 15A (Note Fig. 7)			0.51	0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 6	i)	1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN _(UH) , IN _(VH) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WH) - COM _(H)	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN _(UL) , IN _(VL) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note Fig. 6) (Note 7)		-	50	-	kΩ
		@ T _{TH} = 100°C (Note Fig. 6) (Note 7)		-	3.4	-	kΩ

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Note: 5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 50 Ω in order to make the SC trip-level of about 15A at the shunt resistors (R_{SU} , R_{SV} , R_{SW}) of 0 Ω . For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SU} , R_{SV} , R_{SW}), please see Fig. 7. 6. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$ 7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_{C}), please make the experiment considering your application.

Recommended Operating Conditions

ltom	Sympol	Condition		Values			
item	Symbol			Тур.	Max.	Unit	
Supply Voltage	V _{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V	
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	13.5	15	16.5	V	
High-side Bias Voltage V _{BS}		Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.5	15	16.5	V	
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3	-	-	us	
PWM Input Signal	f _{PWM}	$T_C \le 100^{\circ}C, T_J \le 125^{\circ}C$	-	15	-	kHz	
Input ON Threshold Voltage V _{IN(ON)}		$\begin{array}{l} \mbox{Applied between IN}_{(UH)}, \mbox{IN}_{(VH)}, \mbox{IN}_{(WH)} - \\ \mbox{COM}_{(H)}, \mbox{IN}_{(UL)}, \mbox{IN}_{(VL)}, \mbox{IN}_{(WL)} - \mbox{COM}_{(L)} \end{array}$	0~0.65		V		
Input OFF Threshold Voltage	V _{IN(OFF)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} - \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} - \text{COM}_{(\text{L})} \end{array}$		4~5.5		V	

©2003 Fairchild Semiconductor Corporation