TOSHIBA GTR MODULE SILICON N CHANNEL IGBT

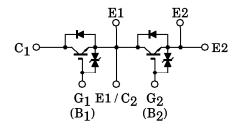
M G 1 0 0 Q 2 Y S 4 2

HIGH POWER SWITCHING APPLICATIONS.

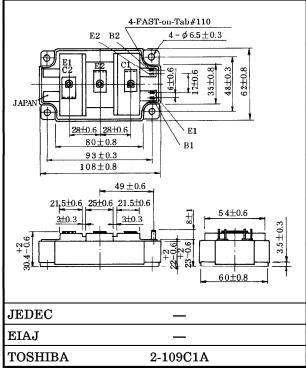
MOTOR CONTROL APPLICATIONS.

High Input Impedance

High Speed: $t_f = 0.5 \mu s$ (Max.)


 $t_{rr} = 0.5 \mu s (Max.)$

Low Saturation Voltage


: $V_{CE(sat)} = 4.0V$ (Max.)

- Enhancement-Mode
- Includes a Complete Half Bridge in One Package.
- The Electrodes are Isolated from Case.

EQUIVALENT CIRCUIT

Unit in mm

Weight: 430g

MAXIMUM RATINGS (Ta = 25°C)

100 0 100 10 11 10 11 11 10 10 11 10 10					
CHARACTERISTIC		SYMBOL	RATING	UNIT	
Collector-Emitter Voltage		v_{CES}	1200	V	
Gate-Emitter Voltage		v_{GES}	±20	V	
Collector Current	DC	$I_{\mathbf{C}}$	100	- A	
	1ms	I_{CP}	200		
Forward Current	DC	$I_{\mathbf{F}}$	100	A	
	1ms	$I_{\mathbf{FM}}$	200		
Collector Power Dissipation (Tc=25°C)		PC	700	W	
Junction Temperature		$T_{\rm j}$	150	°C	
Storage Temperature Range		$\mathrm{T_{stg}}$	-40~125	°C	
Isolation Voltage		V_{Isol}	2500 (AC 1minute)	V	
Screw Torque (Terminal / Mounting)		_	3/3	N·m	

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current		I_{GES}	$V_{GE} = \pm 20V, V_{CE} = 0$	_	_	±20	μ A
Collector Cut-off Current		I_{CES}	$V_{CE} = 1200V, V_{GE} = 0$	_		2.0	mA
Gate-Emitter Cut-off Voltage V _{GE(OI}		V _{GE(OFF)}	$I_{\text{C}}=100\text{mA}, V_{\text{CE}}=5\text{V}$	3.0	_	6.0	V
Collector-Emitter Saturation Voltage		V _{CE(sat)}	$I_{C} = 100A, V_{GE} = 15V$	-	3.0	4.0	V
Input Capacitance		Cies	$V_{CE} = 10V, V_{GE} = 0, \\ f = 1MHz$	_	12000	_	pF
Switching Time	Rise Time	t _r	0.10	_	0.3	0.6	μs
	Turn-on Time	ton	15V 9.1Ω 5 600V	_	0.4	0.8	
	Fall Time	t_f	0 7 []	_	0.2	0.5	
	Turn-off Time	toff	\square -15V _{600V}	_	0.8	1.5	
Forward Voltage		$V_{\mathbf{F}}$	$ I_{\rm F}=100{\rm A},\ V_{\rm GE}=0$	_	2.0	3.0	V
Reverse Recovery Time t _{rr}		t _{rr}	$I_F = 100A, V_{GE} = -10V$ di / dt = 200A / μ s	_	0.25	0.5	μs
Thermal Resistance		$R_{ ext{th(j-c)}}$	Transistor	_	_	0.179	°C/W
			Diode	_	_	0.5	C / W