

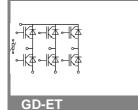
SEMITOP[®] 3

IGBT Module

SK25GD126ET

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Inverter

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT				<u>.</u>			
V _{CES}	T _j = 25 °C		1200	V			
I _C	T _j = 150 °C	T _s = 25 °C	32	Α			
		T _s = 80 °C	23	А			
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	А			
V _{GES}			± 20	V			
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs			
Inverse D	Diode						
I _F	T _j = 150 °C	T _s = 25 °C	28	А			
		T _s = 80 °C	19	А			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		50	А			
Module							
I _{t(RMS)}				А			
T _{vj}			-40 +150	°C			
T _{stg}			-40 +125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics T _s =			25 °C, ur	25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		5	5,8	6,5	V		
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,15	mA		
		T _j = 125 °C				mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA		
		T _j = 125 °C				nA		
V _{CE0}		T _j = 25 °C		1	1,2	V		
		T _j = 125 °C		0,9		V		
r _{CE}	V _{GE} = 15 V	T _i = 25°C		28	36	mΩ		
		T _j = 125°C		44		mΩ		
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,1	V		
		T _j = 125°C _{chiplev.}		2,2		V		
C _{ies}		· · ·		1,8		nF		
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,095		nF		
C _{res}				0,082		nF		
t _{d(on)}				85		ns		
t,	R _{Gon} = 25 Ω	V _{CC} = 600V		30		ns		
E _{on}		I _C = 25A		3,3		mJ		
t _{d(off)}	R_{Goff} = 25 Ω	T _i = 125 °C		430		ns		
t _f		V _{GE} =±15V		90		ns		
E _{off}				3,1		mJ		
R _{th(j-s)}	per IGBT	•			1,2	K/W		

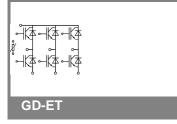
SEMITOP[®] 3

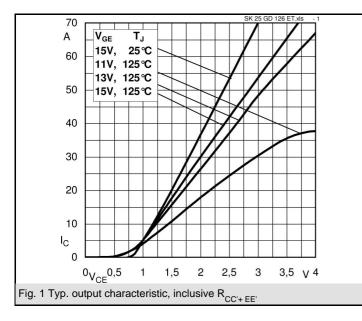
IGBT Module

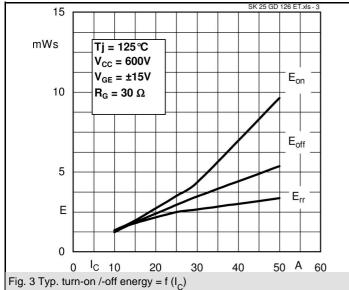
Preliminary Data

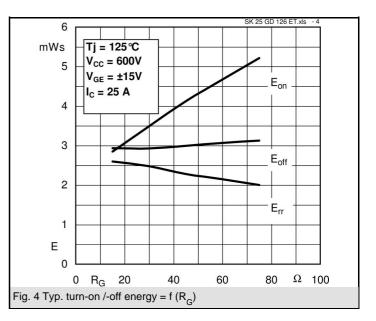
Features

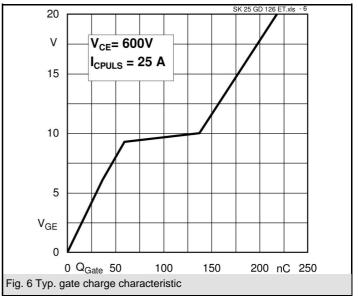
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

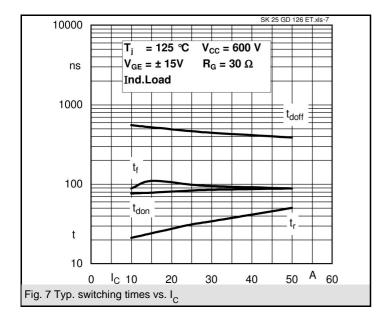

Typical Applications*

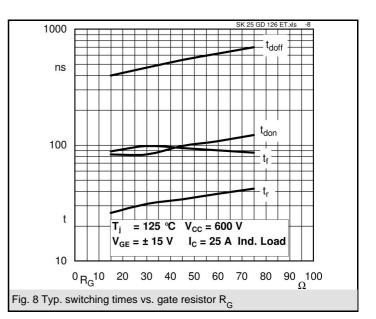

Inverter

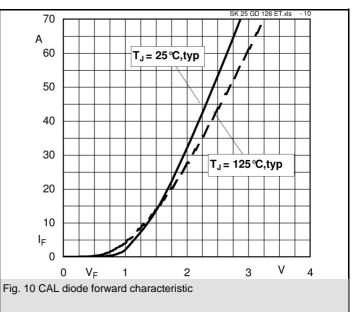

Characteristics Symbol |Conditions min. max. Units typ. **Inverse Diode** T_i = 25 °C_{chiplev.} V $V_F = V_{EC}$ I_{Fnom} = 25 A; V_{GE} = 0 V 1,8 $T_i = 125 \ ^\circ C_{chiplev}$ 1,8 V T_i = 25 °C 1 1.1 V V_{F0} T_i = 125 °C 0,8 V T_i = 25 °C 32 42 mΩ r_F T_i = 125 °C 40 mΩ I_F = 25 A T_i = 125 °C 31 Α I_{RRM} di/dt = -950 A/µs 5 μC Q_{rr} V_{CC}= 600V Err 2,1 mJ R_{th(j-s)D} 1,9 K/W per diode Ms to heat sink 2,25 2,5 Nm w 30 g **Temperature sensor** T_s=100°C (R₂₅=5kΩ) 493±5% Ω R₁₀₀

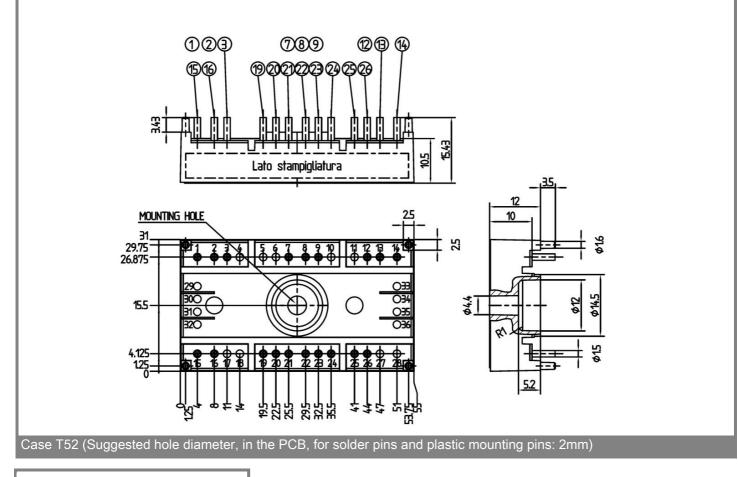

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

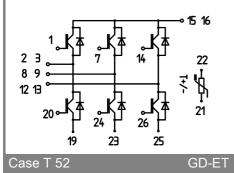

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











UL recognized file

no. E 63 532

