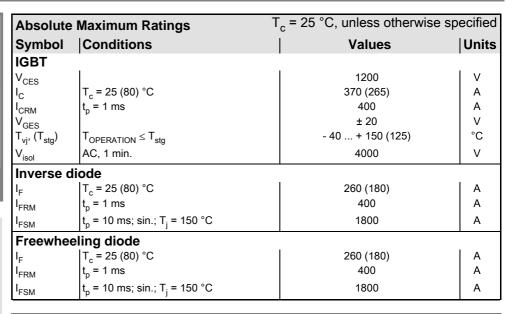
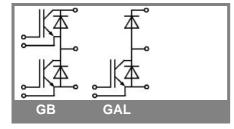
SKM 300GB128D

SEMITRANSTM 3

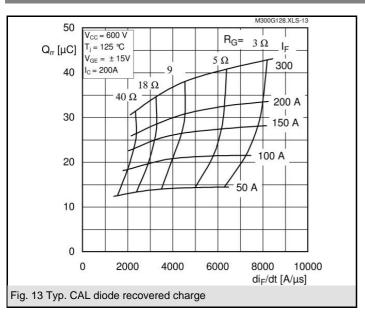
SPT IGBT Module

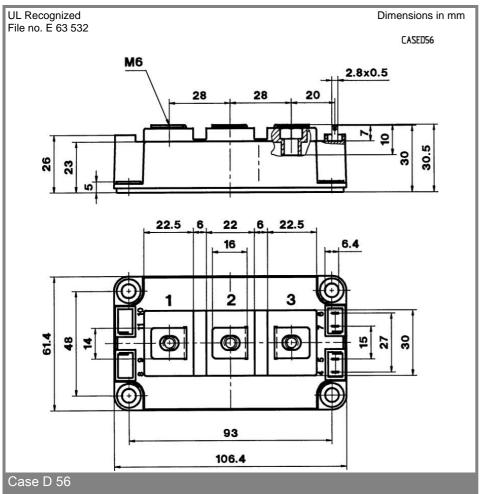

SKM 300GB128D SKM 300GAL128D

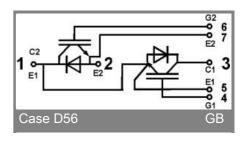
Features

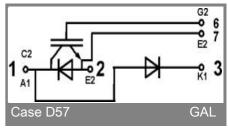

- · Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications


- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz




Characteristics T _c = 25 °C, unless otherwise speci					ecified
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 () °C$		0,2	0,6	mA
$V_{CE(TO)}$	$T_j = 25 () ^{\circ}C$		1 (0,9)	1,15 (1,05)	V
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		4,5 (6)	6 (7,5)	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V, chip level		1,9 (2,1)	2,35 (2,55)	V
C _{ies}	under following conditions		17		nF
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$		2		nF _
C _{res}			1,9		nF
L _{CE}				20	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 200 A		170		ns
t _r	$R_{Gon} = R_{Goff} = 5 \Omega, T_j = 125 °C$		55		ns
t _{d(off)}	V _{GE} = ± 15 V		660		ns
t _f			60		ns
E _{on} (E _{off})			22 (22)		mJ
Inverse d					
$V_F = V_{EC}$	$I_{\text{Fnom}} = 200 \text{ A}; V_{\text{GE}} = 0 \text{ V}; T_j = 25 (125)$		2 (1,8)	2,5	V
V _(TO)	T _i = 25 (125) °C		1,1	1,2	V
r _T	$T_{j} = 25 (125) ^{\circ}C$		4,5	6,5	mΩ
I _{RRM}	$I_{Fnom} = 200 \text{ A; } T_j = 125 \text{ () } ^{\circ}\text{C}$		280		Α
Q_{rr}	di/dt = 6300 A/μs		33		μC
E _{rr}	V _{GE} = 0 V		11		mJ
FWD					
$V_F = V_{EC}$	$I_F = 200 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V
$V_{(TO)}$	T _j = 25 (125) °C		1,1	1,2	V
r _T	$T_j = 25 (125) ^{\circ}C$		4,5	6,5	mΩ
I _{RRM}	$I_F = 200 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		280		A
Q _{rr}	$di/dt = 0 A/\mu s$		33		μC
E _{rr}	V _{GE} = V		11		mJ
Thermal characteristics					
R _{th(j-c)}	per IGBT			0,085	K/W
R _{th(j-c)D}	per Inverse Diode			0,18	K/W
R _{th(j-c)FD}	per FWD			0,18	K/W
R _{th(c-s)}	per module			0,038	K/W
Mechanical data					
M _s	to heatsink M6	3		5	Nm
M _t	to terminals M6	2,5		5	Nm
w				325	g



SKM 300GB128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.